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Abstract

The security of password based applications is one of major concerns nowadays regarding
the proliferation of web and mobile applications. Keystroke dynamics is an emerging solution
to reinforce logic authentication. It is a behavioral modality that verifies the typing manner
of the user in addition to the verification of the syntactic conformity of the password.

The major disadvantage of the keystroke dynamics modality is the instability of the typing
manner of users over time. In fact, it changes according to different causes like the emotional
state, activeness, password mastery etc. Adaptive strategies are one of the most interesting
solutions to handle these problems. They consist in updating the reference describing the
typing rhythm of the user during the use of the authentication system.

Different contributions are proposed in this PhD thesis. First, we put forward an original
adaptation strategy for keystroke dynamics that requires a single sample during enrollment.
This solution considerably improves the usability of keystroke dynamics modality, since all
methods in the state of the art require a lot of samples during the enrollment step. Second,
throughout the operational use of the authentication system, the user’s template in addition
to acceptance and adaptation decision thresholds are updated; whereas in the literature, only
the user’s template is generally updated when keystroke dynamics modality is dealt with.
Thus, we propose a novel adaptation decision called "the adapted thresholds". This new
solution, compared to other approaches in the literature, leads to better results on significant
datasets used by the scientific community in the field. Afterwards, an adaptive strategy for
each category of users is proposed. In fact, a user dependent adaptative strategy based on
Doddington Zoo theory has demonstrated competitive performances.

Keywords: Biometrics, keystroke dynamics, adaptive strategies, authentication;
password security; Doddington Zoo; users classification.



Résumé

La sécurisation des applications par mot de passe est l’une des préoccupations majeures
de nos jours vu la prolifération des applications web et mobiles. La dynamique de frappe
au clavier est une solution émergente pour renforcer l’authentification logique. C’est une
modalité biométrique comportementale qui vérifie la dynamique de frappe au clavier de
l’utilisateur en plus de la vérification de la conformité syntaxique du mot de passe.

Le principal inconvénient de la modalité de la dynamique des frappe au clavier est
l’instabilité de la façon de taper au clavier des utilisateurs au fil du temps. En fait, elle
change en fonction de différentes causes comme l’état émotionnel, l’activité, la maîtrise des
mots de passe, etc. Les stratégies adaptatives sont l’une des solutions les plus intéressantes
pour remédier à ces problèmes. Elles consistent à mettre à jour la référence décrivant la
dynamique de frappe de l’utilisateur au cours de l’utilisation du système d’authentification.

Différentes contributions sont proposées dans cette thèse. Premièrement, nous proposons
une stratégie d’adaptation originale pour la dynamique de frappe au clavier qui nécessite un
seul échantillon lors de l’enrôlement. Cette solution améliore considérablement la facilité
d’utilisation de la modalité, car toutes les méthodes de l’état de l’art nécessitent beaucoup
d’échantillons dans l’étape d’enrôlement. Deuxièmement, durant l’authentification, en plus
du modèle de l’utilisateur, les seuils d’acceptation et d’adaptation sont mis à jour; peu de
méthodes de l’état de l’art font ce type de mise à jour. Nous proposons un nouveau critère
de décision de mise à jour appelé "les seuils adaptés". Cette nouvelle solution, comparée
à d’autres approches de la littérature, conduit à de meilleurs résultats sur des ensembles de
données significatifs utilisés par la communauté scientifique. Ensuite, une stratégie adaptative
pour chaque catégorie d’utilisateurs est proposée. En fait, une stratégie d’adaptation basée
sur la théorie du zoo de Doddington a démontré des performances compétitives.

Mots-clés: biométrie, dynamique de frappe au clavier, stratégies adaptatives, au-
thentification; sécurité par mot de passe; Zoo de Doddington; classification des utilisa-
teurs.
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8 Chapter I. Introduction

Secret passwords are the most common mechanism for authenticating human users of
computer systems, especially on the Internet. Passwords are the foundation of the security
policy of a wide range of online services, protecting financial transactions, health records
and personal communications, and blocking intrusions into corporate, electrical and military
networks. Password security has become an important topic of research because of the
pervasiveness of modern Web services and their increasingly critical nature.

Despite numerous research on alternative authentication schemes, text passwords have
several advantages: common usage, easy implementation, no additional sensors. Thus,
we cannot imagine application security without passwords. Two-factor user authentica-
tion, which is generally based on password access associated with password managers or
biometrics, promises to increase the security and safety of passwords against attacks.

I.1 Motivations

The huge amount of personal and / or confidential information stored in our electronic
devices, both PCs and smartphones, requires to protect them against unauthorized access.
Since virtual environments are responsible for storing sensitive information and performing
critical actions, security services that aim to neutralize threats on identity theft have been
developed and must now evolve faster than the methods that seek to address them.

User authentication is a security service used to counter the impersonation (that is,
someone who claims to be someone else) and its purpose is to protect the system against
all unauthorized accesses. There are three authentication approaches that differ in how the
user can prove that he is what he claims to be: proof by possession, by knowledge, or by
property. The possession factor is something the user has, like a smart card; the knowledge
factor of authentication is something the user knows, such as a username and password; and
the property factor is a human characteristic (biometrics).

Access control methods based on knowledge and possession are the most widespread
despite their weaknesses. Indeed, passwords can be forgotten, heard or guessed using various
methods such as dictionary or brute force attacks. Smart cards also can be lost, stolen or
cloned [Bergadano et al., 2003]. Due to these limitations, biometric authentication methods
offer an alternative layer of security or added to the methods mentioned above to rely on traits
inherent to the person and therefore can not be removed or easily imitated, all by remaining
intuitive to the user and keeping the process convenient and efficient [Alsultan & Warwick,
2013].

In what follows, we present statistics of the various hacking attacks reported in Tunisia
and around the world, as well as the possible solutions to overcome them.
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I.1.1 Vulnerability of passwords to attacks

Today, in Tunisia and around the world, the official websites of governments and compa-
nies as well as accounts of social networks, e-commerce sites and e-banking have become
the target of hackers. According to the latest news in relation to activism movements, the
Tunisian National Agency for Computer Security (ANSI) has just raised the national alert
level to 3.

According to data collected by ANSI, an average of 226,000 cybernetic attack events per
month were recorded in Tunisia during the year 2016. These attacks continue to evolve and
worsen in 2017 as shown in the figure I.1.
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Figure I.1 – Comparison of attacks number detected by ANSI during 2016 and 2017 in Tunisia

According to "HACKMAGEDDON Information Security Timelines and Statistics" [Passeri,
2017] which publishes aggregated statistics related to different attacks events, a total of 1061
cyber-attacks were collected in 2016. During the year 2017, 950 attack events were gathered.
Collected data for the statistics are derived from timelines published every two weeks (plus
or minus). The journal collects major cyber events from related months selected from open
sources (such as blogs or news sites) which gives an idea of the threat landscape and the
main trends around the world. Of course, each event reports the sources for the sake of
completeness.

These attacks usually aim at modifying a part or the entirety of a website or putting it
completely out of order. In addition, they are interested in stealing information, such as
industrial secrets, intellectual property or bank data (such as credit cards). The breakdown of
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the number of incidents by type of attack reported in 2017 by ANSI is shown in figure I.2
and those collected by HACKMAGEDDON are illustrated in figure I.3.
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Figure I.2 – Distribution of the main incidents by type of attack according to ANSI
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Figure I.3 – Distribution of the main incidents by type of attack according to HACKMAGEDDON

It is also interesting to compare motivations in 2016 to those of 2017. Regarding
HACKMAGEDDON statistics, Cyber Crime confirmed its crown even in 2017 with a similar
percentage (77.4% vs. 72.1%). Hacktivism fell to 4.3% in 2017, compared with 14.2% in
2016. In contrast, cyber espionage experienced an opposite trend, going from 4.3% to 14.5%.
Cyber warfare reported a slight decrease to 3.4% of 4.3%. Concerning ANSI statistics, 2016
was the year of web attacks in Tunisia. Whereas in 2017, the percentages of viral attacks is
the highest.

During 2017, 950 events were collected in comparison to 1061 events in 2016. Despite a
minor number of events were recorded, 2017 was characterized by large scale attacks (like
WannaCry or NotPetya). The Monthly attacks chart, depicted in figure I.4, shows that the
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level of activity has dropped slightly from 2016 to 2017, with the exception of September,
October and November.
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Figure I.4 – Monthly attacks during the years 2016 and 2017 according to HACKMAGEDDON

Malware marked the year 2017. This is the main conclusion of the top 10 attack tech-
niques chart presented in figure I.5. The hijackings (DNS hijacking and account hijacking)
were mostly in line with the 2016 results, as like as exploiting vulnerabilities. Targeted
attacks reached 15.2% while the fall of hacktivism is one of the possible reasons for the fall
of DDOS and SQLi.

I.1.2 Possible solutions

Research and statistics have analyzed many password problems for decades. In fact,
passwords are easy to guess, hard to remember, easily stolen and vulnerable to observation
and replay attacks [Jobusch & Oldehoeft, 1989, Morris & Thompson, 1979]. Research has
invested considerable efforts into alternatives, including biometrics, graphical passwords,
hardware tokens, and federated identity. However, text passwords remain the dominant
mechanism for authenticating people on computers, and seem likely to remain so for the
foreseeable future [Bonneau et al., 2012, Herley & Van Oorschot, 2012]. Considerable efforts
have been devoted to the reinforcement of security textual passwords.
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Figure I.5 – Comparison of the most common attack techniques from 2015 to 2017 according to HACK-
MAGEDDON

I.1.2.1 Password composition rules

Security can be compromised if passwords are easy to guess, although research has
consistently shown that users tend to choose simple and easy-to-remember passwords [Shih
et al., 2018]. To deal with this problem, password management services often use dialing
policies such as the following requirement:

"The password must contain a mixture of uppercase and lowercase letters
and at least one digit".

The intended security purpose for password composition rules is to prevent users from
choosing easy-to-guess passwords and to guide them to secure password management. A
first example of comprehensive guidelines can be found in The Password Management
Guide [Brand, 1985]. Nowadays, many rules are automated as a password reinforcement
strategy used to regulate the length and composition of passwords. Other password policies
include blacklists (Proactive Password Check), password expiration, rate limiting, and lockout
policies.

The most common password rules encountered by users include two categories: password
reinforcement rules are applied when a password is created and password management rules
guide users to secure the management of their passwords.
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I.1.2.1.1 Reinforcement rules

Reinforcement rules are usually interested in:

• Length: A password length policy prevents users from choosing passwords that are
too short. Password policies typically require a length of at least 6 to 8 characters.
There is considerable variability, where some websites may require a shorter length
(for example, a 4-digit PIN) while others require longer passwords (for example, at
least 8 characters or an exact length).

• Composition: A password composition policy prevents users from choosing passwords
that are too simple. It applies rules on the types of characters that can be used. A
password composition policy typically requires passwords that contain characters from
one or more of the following sets:

◦ Uppercase characters
◦ Lowercase characters
◦ Decimal base digits
◦ Non-alphanumeric ASCII characters

A very simple policy can only insist on a minimal composition (for example, numbers
only), while others force a more complex composition (for example, uppercase and
lowercase letters, numbers, and special characters). It is suggested that changing
complex rules across multiple sites might make it difficult to share passwords between
sites [Florêncio & Herley, 2010], but there is little evidence to support that this is the
main purpose of a composition policy.

• Blacklist: Some sites prohibit the use of dictionary words because of the susceptibility
of selected passwords to password guessing attacks (attackers use lists of dictionaries
or probable passwords to guess them) [Habib et al., 2017]. Others apply this rule
by prohibiting the use of the most common passwords. For example, users may be
prohibited from choosing passwords from a black list of the 1000 most frequently used
passwords. Typically, the lists of most commonly used passwords are obtained from
disclosed datasets (eg, RockYou).

While the password reinforcement strategies can contribute to their protection against
brute-force attacks, it cannot protect users from password capture by malware, social engi-
neering, or physical observation.
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I.1.2.1.2 Management rules

Management rules generally advise us to:

• Change it often: An expiration or password aging policy requires users to change their
passwords at a fixed time interval (for example, every 90 days). Regular password
change has been recommended since a long time by the National Institute of Standards
and Technology NIST of U.S. Department of Commerce [Brand, 1985]. The historical
security goal is to protect users from the risk of undetected compromise of password
over a period of time [Cheswick, 2013, Florêncio et al., 2014]. The more a password
is used for authentication purposes, the higher its probability of exposure to hackers.
Currently, password expiration is rarely applied in general purpose websites [Florêncio
& Herley, 2010], but is commonly used by government and academic institutions.

• Do not reuse: The number of passwords managed by a single user increases with
each new account creation. When passwords are reused across multiple accounts, an
attacker who compromises a site can use the same password to hack the user’s account
on another site. Unfortunately, the number of passwords a user needs to remember
keeps increasing, which is not easy, knowing that a typical Internet user estimated at
25 separate accounts [Das et al., 2014]. It is suggested that composition policies make
password reuse more difficult [Florêncio & Herley, 2010], but they do not directly
prevent their reuse. Password policies on different sites are diverse. A unique password
policy is only relevant on the site that applies it.

• Do not write it: users are advised not to write their passwords. Difficult passwords
generated by password composition rules, pushes users to write them down so they will
not be forgotten. The original security intent of this rule is to prevent local attacks from
friends, co-workers, family members, or other observers on the spot. Although, plain
text passwords should never be stored on unprotected computers with network access,
writing passwords copies on papers may not pose a serious security risk [Cheswick,
2013].

• Do not share it with anyone: users are advised not to share their passwords with anyone.
The reasons for security seem obvious, but in practice, passwords are often shared with
relatives and colleagues. Some security experts [Cheswick, 2013, Stobert & Biddle,
2014] argue that sharing passwords may be appropriate in certain circumstances, such
as when recovering accounts or in an emergency.
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Studies have shown that password composition policies as well as password indicators (or
verbal notifications) help users to choose stronger passwords [Shay et al., 2010, Komanduri
et al., 2011, Ur et al., 2012] . However, the harm caused while using an extremely restrictive
password policy may be superior to the harm prevented by that policy. Moreover, they may
increase the user’s annoyance and tiredness [Shay et al., 2010].

A new surprising recommendation of Password Guidelines from NIST consists in remov-
ing periodic password change requirements [Grassi et al., 2017]. In addition, the mixture of
upper case letters, symbols and numbers is no more needed. NIST indicates that it has been
frequently shown that these types of rules often generate worse passwords.

I.1.2.2 Biometric solutions

Other solutions offer the possibility to require biometric data in addition to passwords or
to completely replace passwords with biometric digital data. These solutions are nowadays
well widespread and even marketed in varieties of novel technological products.

Galaxy S8 or S8+ smartphones, for example, facilitate and secure some of the most
sensitive activities such as credit or debit card payment and bank accounts access, with a
selection of authentication options, including biometric verification. They scan irises or
fingerprints to make purchases with Samsung Pay in-store, then check bank accounts via
the Samsung Pass and immediately connect to favorite sites through the web login function,
as shown in the figure I.6. These smartphones offer the possibility of unlocking them
with fingerprint recognition solution. While using the smartphone, the finger is naturally
positioned at the fingerprint sensor placed at the back and it is unlocked in one motion.
Increasingly, it seems that in the technological market, passwords will be replaced by the user
itself. His face, fingerprints, iris, even heartbeat will authenticate the entry into the digital
world.

According to the Biometric Research Group, 650 million people would use their biometric
characteristics to unlock their mobile phones by the end of 2015. By 2020, the number of
biometric smart-phone users will increase and will reach 2 billion.

As mobile devices such as smartphones and tablets have become ubiquitous, and as
personal identification and authentication are increasingly important in the connected world,
biometric technologies are becoming an integral part of mobile devices. Biometrics, whether
for mobile devices or large stationary systems, usually performs one of two functions:
authentication, proof that someone is what he/she claims to be, or identification, determination
of who is that person. Almost all identification uses are facing businesses, especially
government use cases. Somewhere in the middle, financial institutions offer their users the
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(a) Iris (b) Signature (c) Fingerprint

Figure I.6 – Biometric authentication for smartphones

ability to authenticate with online banking systems with their voices or with their iris, instead
of entering a Personal Identification Number (PIN).

According to a new report by Tractica, the global market for mobile biometrics will reach
$ 3.5 billion by 2024, rising from a base of $ 249 million in 2015, as shown in Figure I.7.
The business information firm predicts that cumulative revenues for the 10-year period will
total $ 17.5 billion revenue generated by mobile biometric devices as well as revenue from
software applications.
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Figure I.7 – Total revenue of mobile biometrics distributed by region around the world

Many basic biometric technologies have been discovered since a long time, but suppliers
had no idea to use them, and conditions are now in place to allow mobile devices to exploit
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these technologies. This sector can be seen as a classic example of use cases that finally
allow to catch up with biometric technology. Most of the revenue in the global market
will remain fingerprint authentication on-board, now integrated into smartphones’ TouchID.
This biometric solution is expected to increase the share of total revenue, as touch-sensitive
smartphones becomes more competitive than older smart-phones.

Despite the emergence of biometrics in commercialized applications, keystroke dynamics
has been used in few cases by manufacturers and it hasn’t been widespread in the technologi-
cal market until now.

I.2 Thesis objectives

Keystroke dynamics, which will be detailed in the chapter II, is a behavioral biometric
solution that authenticates individuals according to their typing manner on the keyboard.
Although this modality has proved its efficiency in several scientific researches [Giot et al.,
2011b, Pisani et al., 2016, Tsimperidis et al., 2018], it is not yet fully adopted in industrialized
applications, unlike other morphological modalities such as fingerprint, iris and face. This
is mainly due to the need for several captures during the learning phase to create the model
describing the typing rhythm of users. Furthermore, keystroke dynamics suffers from intra-
class variation in the user’s behavior while manipulating the keyboard.

As part of this thesis, we intend to propose a new efficient approach of logical access
control enhanced by keystroke dynamics while addressing the following problems:

• The main idea is to reduce the user’s enrollment phase to the strict minimum in
order to facilitate the industrialization of keystroke dynamics. It has the advantage
of considering a single sample in the enrollment phase to create the reference of the
user. Therefore, the proposed method corresponds to the conditions of industrial
and operational applications, for which the user enters the password only once when
creating an account.

• Proposal of a new update system to overcome the limitations of intra-class variability:
This system must work online. It also helps to enrich the description of user’s keystroke
dynamics by increasing the reference size thanks to the new accepted queries.

• Highlighting a user specific adaptation strategy regarding the difference between users
in relation with their typing rhythm behavior.

The aim of this PhD thesis work is to propose contributions on these aspects and to
demonstrate the interest of these solutions on the biometric systems developed within the



18 Chapter I. Introduction

LATIS and the GREYC research labs. The industrial applications of this work are immediate,
especially for authentication on mobile or in the field of payment.

I.3 Main Contributions

The main contributions of this PhD thesis are:

• Proposal of a new adaptation criterion that has the advantage of being individual and
adaptive. The adaptive thresholds are related to the decision whether to accept the
query or not in addition to the decision of updating the reference. Thus, the new
adaptation approach consists in updating the reference and the decision threshold at the
same time. In fact, we consider that not only the reference must follow the variations
of the keystroke dynamics of the user over time, but the decision threshold must be also
well chosen. Indeed, a strict threshold does not help to include intra-class variability
in the reference. In addition, a very high threshold raises the possibility of including
imposter information in the reference. Thus, we used an individual threshold varying
from one update session to another so that it is the most appropriate during the use of
the system.

• Development of a solution that allows to model the user’s keystroke dynamics while
minimizing the number of samples serving to the definition of the reference. For this
purpose, an enrollment process based on a single sample (the password is typed once
during the account creation step) is proposed. The size of each reference of the user
increases during the use of the system, to reach a maximum size equal to 10 thanks
to the mechanism "double serial". The growing window first serves to enlarge user’s
gallery in order to capture more intra-class variability. When the maximum size of
the reference is reached, the sliding window then takes place and serves to follow the
temporal variation of the keystroke dynamics of the user over time. The proposed
contribution is an interesting solution because it meets the industrial needs (usability
and efficiency).

• Implementation of a GA-KNN verification method to obtain better performance during
all adaptation sessions. In fact, the weights obtained thanks to the optimization of
the genetic algorithm AG, and associated with the different distances of the KNN
classifier, have been useful for minimizing recognition errors. In comparison with
previous works, the proposed method showed a great performance improvement.
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• Definition of a new update strategy specific to the user category. Generally, a single
adaptation mechanism is applied to all users of the authentication process. Although,
it has been shown that the performance of biometric systems depends on the user’s
specificity. Therefore, an update strategy for each category of users has been developed.
Then, users are classified based on the Doddington Zoo method. This is a widely used
theory for user classification, but it has not been mixed with adaptive strategies for the
keystroke dynamics modality. First, the recognition of the user’s class according to the
animal categories of the Doddington Zoo helps to distinguish the specificity of the user.
Then, an adaptive strategy that overcomes the problems of the user class is adopted.

I.4 Thesis outline

In addition to the general introduction, this manuscript is organized around five essential
parts, presented as follows:

• Chapter II briefly introduces some notions about biometrics. Then, we recall some
generalities on keystroke dynamics as well as the limits of this biometric modality.

• Chapter III describes and compares the different alternatives where the biometric
reference is updated through various adaptation strategies. This solution leads to
an important and growing area of research, known as adaptive biometric systems or
update of biometric models. This chapter provides an in-depth discussion of several
aspects of adaptive biometric systems and evaluation methodology. Some challenges
and prospects for future works are also discussed.

• Chapter IV details the first contributions proposed during this thesis. A new update
strategy based on a single sample during the enrollment phase is proposed. A new
decision criterion for updating "adaptive thresholds" is also considered. In addition to
KNN-AG classification, the new "double serial" update mechanism is also introduced.

• Chapter V shows the interest of the new update strategy specific to each category of
users. Based on the theory of Doddington Zoo, users are grouped according to their
characteristics. Afterwards, suitable adaptation parameters to each group of users are
applied.

• Finally, a general conclusion that summarizes this research and provides some potential
perspectives.
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II.1 Introduction

Password-based authentication is commonly used in our daily lives such as social net-
works, e-mail, e-commerce and e-banking. Given the increasing number of hacker attacks,
the mere use of passwords is not enough to protect personal data. Keystroke dynamics is
a promising solution that improves the security of password access by analyzing the user’s
typing manner. It is a behavioral biometric modality that is increasingly integrated into the
logical access security research.

II.2 Biometrics

The term "biometrics" generally refers to the biological, morphological and behavioral
characteristics of human beings. However, it is increasingly associated with automated
techniques to identify or verify the identity of individuals based on these characteristics.
Usually, the identity request of an individual is checked according to what he/she owns (eg,
keys, a card) or what he/she knows (eg, a password, a PIN code). Nevertheless, for biomet-
ric recognition, this verification is based on what the individual is, namely the biometric
characteristics of the person, such as a fingerprint or a signature.

Biometrics is often considered as one of the most important solutions to security problems
involving logical access control (eg, a computer, a network, e-commerce, telecommunica-
tions); physical access control (eg, buildings, airports, etc). According to [Scott Goldfine,
2015], the global biometrics market will grow from $ 2 billion in 2015 to $ 14.9 billion by
2024.

Thereby, a biometric recognition system is generally divided into three major phases as
depicted in figure II.1:

• Pre-processing phase: In order to obtain a biometric reference which is the best
representative of the user’s characteristics, various methods use a data cleaning step
that can be manual or automated. This pre-treatment will therefore mainly consist in:

– do not keep any capture considered as erroneous, in the case of a static authenti-
cation (and thus propose a new acquisition to the user);

– do not keep any capture considered as erroneous, in the case of continuous
authentication (which is completely transparent for the user);

– standardize the data [Hocquet, 2007] by removing the mean and scaling to unit
variance or by dividing the features by their standard deviation. It is generally
required, especially for machine learning classifiers ;
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– discretize the data [Revett et al., 2006];

– reduce the size of the space of the captured data.

• Enrollment Phase: Enrollment is the step of registering the person on the authentication
system that calculates the user’s biometric reference from one or more captures. In
the literature, this number of captures is often greater than or equal to 20 for keystroke
dynamics [Giot et al., 2011b]. The number of captures required for the creation of the
reference can therefore become a hard task for users (especially if they are subject to
many mistakes in it). Depending on the studies, either the user’s password is requested
or one or more texts identical to all users are requested [Gaines et al., 1980]. Generally,
the first case is used to set up static authentication mechanisms (at the start of the
user’s session), while in the second, it is more useful for continuous authentication (the
machine constantly checks whether the current user is the connected one).

• Authentication phase: Authentication consists in asking the user to provide his/her
identifier and to perform a new capture. Once the capture’s data is extracted, the
mechanism serves to check if this signature matches the model registered in the system.
If both match, the user is authenticated, otherwise he/she is rejected. Most often, this
decision criterion is based on a threshold that is set in the system. Figure II.1 shows
the different steps of authentication.
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Figure II.1 – Life cycle of a biometric system according to the ISO standard [Bhargav-Spantzel et al., 2007].
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II.2.1 Properties of biometric characteristics

To be considered as useful biometric features, any biometric modality must satisfy a
number of properties [Jain et al., 2004a], namely:

• Universality: each person must possess the biometric characteristic;

• Distinctiveness: two persons should have sufficiently different characteristics;

• Permanence: the characteristic must be sufficiently invariant (relative to the matching
criterion) over a period of time;

• Collectable / Perceptibility: the characteristic can be measured quantitatively.

In addition, biometric authentication systems should also take into consideration [Jain
et al., 2011] many aspects:

• Performance: which refers to the achievable recognition accuracy and speed, including
the resources needed to achieve the accuracy of the desired recognition at the desired
speed as well as the operational and environmental factors that affect accuracy and
speed;

• Acceptability: which indicates how much people are willing to accept the use of a
particular biometric characteristic as identifier in their daily lives;

• Circumvention: which reflects how it is easy to cheat the system using fraudulent
methods.

We note that it is difficult for a biometric authentication system to satisfy all these proper-
ties, because they can sometimes be contradictory. Although some properties are specific to
the modality (for example, universality, distinctiveness, permanence, perceptibility), others
depend on the specific implementation and context (eg performance, circumvention) or
culture (for example, acceptability). Some of them are intrinsic to a biometric modality and
can not be improved (universality or distinctiveness).

In the next section, a brief description of the most known biometric modalities is pre-
sented.
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II.2.2 Biometric modalities

The biometric characteristics can be divided into three main classes, namely: morpholog-
ical, behavioral and biological (see Figure II.2). Thus, a biometric system is essentially a
pattern recognition system, which enables personal recognition by determining the authentic-
ity of a specific feature owned by the user:

• The morphological characteristics are related to the body shape: retina, fingerprints
(finger, thumb or palm), iris, voice, hand, face, ear, waist, weight, skin and veins;

• The behavioral characteristics are related to a person’s behavior: signature dynamics,
Handwriting, keystroke dynamics and voices;

• The biological characteristics are linked to the inner part of a living organism: heartbeat,
smell, DNA and blood.

Morphological Behavioral

Biological

Figure II.2 – Examples of biometric modalities used for user authentication.

II.2.2.1 Morphological modalities

• Fingerprint: Fingerprint recognition is one of the oldest techniques of user recognition.
It was developed towards the end of the 19th century by Alphonse Bertillon. The
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first automatic authentication system was commercialized in the early 1960s. The
fingerprint recognition is based on minutiae matching [Rzouga Haddada, 2017, Vibert,
2017].

• Face: Face recognition is based on the characteristics considered significant as the
difference between the eyes, the shape of the mouth, the face round, the position of the
ears [El Kissi Ghalleb, 2017].

• Iris: Since 1950, it has been proved that the iris can be used as an authentication factor.
It has been proven that the probability of finding two identical irises is less than the
inverse of the number of humans who lived on Earth. The treatment of this modality
requires that the person be very close to the sensor [Othman, 2016].

• Voice: Voice recognition is not intrusive for the user and does not require physical
contact with the sensor. The software recognition can be centralized and the voice
transmitted by a network.

Voice recognition systems are based on unique speech characteristics for each individ-
ual. These characteristics are constituted by a combination of behavioral factors (speed,
rhythm, etc.) and physiological factors (tone, age, sex, frequency, accent, harmonics,
etc.) [Seddik et al., 2004a, Seddik et al., 2004b].

II.2.2.2 Behavioral modalities

• Signature dynamics: This system works with a reader sensor and pencil or pen. This
sensor is connected to a computer to control a physical or a logical access.

Any writing movement of the pen is taken into account but also the movements in high
to about 2 cm above the reader. The considered characteristics describing the signature
of the user are generally the speed of the signature, variation of the rhythm of the pen,
acceleration, pressure, calculation of the distance during which the pen is suspended
between two letters, etc. Handwriting, as well, is a personal skill that has been used for
the recognition of handwritten note of in postal addresses on envelopes, bank checks,
etc [Kacem et al., 2012, Saidani et al., 2015, Kacem & Saïdani, 2017].

• Gait: The research deepens the use of biometrics by creating a recognition system
based on the silhouette of the users and their way of walking. This biometric technique
offers significant advantages such as remote recognition of the user, without the need
for cooperation on his part. Detecting suspicious behavior (via video surveillance),
access control to buildings or restricted areas and demographic analysis of a population



26 Chapter II. Keystroke dynamics

in terms of gender and age are some of the possible applications of this technology
[Seddik, 2017].

• Keystroke dynamics: The keystroke dynamics is a characteristic of the individual, it is
somehow the transposition of a behavior to a vector containing the characteristics of
the typing manner of a user [Giot, 2012, Mondal, 2016, Pisani, 2017]. This modality
will be developed in the next section in details.

II.2.2.3 Biological modalities

• Electrocardiogram (ECG): The ECG signal is the most common cardiac signal, and
refers to the electromagnetic polarization and depolarization of heart muscles over
time [Zhang et al., 2017]. It is recorded non-invasively with electrodes attached at the
surface of the body. It has been demonstrated that the ECG has sufficient detail for
identification.

• Photoplethysmography (PPG): The PPG represents the illumination-based sensing
of volumetric changes of blood in the microvascular bed of tissues with every sinus
cycle. Measurements can be collected from the fingertip, toe or ear based on a pulse
oximeters. Unlike ECG, which measures the electrical activity of the heart, PPG more
closely represents the mechanical functioning of the cardiovascular system [Jindal
et al., 2016].

• DNA: DNA biometric recognition is highly reliable and secured approach, but hardly
applied in real time applications. It is suitable to applications where a high level of
security is required. Considering the high cost of DNA analysis and the complexity
of sample collection procedure, DNA recognition method is less used in real time
applications [Radha et al., 2016].

II.2.2.4 Research of LATIS and GREYC laboratories

This thesis is part of the general framework of major research projects in biometrics
conducted both within the team Signal, Image and Document "SID" of the laboratory LATIS
and e-payment & biometrics group in the GREYC laboratory.

The SID research axis currently includes 6 projects that focus on the fields of signal, image
and document. This PhD thesis is part of the Multimodal Biometrics & Security project,
which focuses on data security by designing authentication / verification and watermarking
methods for individuals and avatars also.
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The e-payment & biometrics group conducts research activities in computer security along
two axes with a continuity of theoretical aspects towards the applications, both enriching
each other:

• Biometrics: definition and evaluation of biometric systems, protection of biometric
data. Several biometric modalities are studied such as keystroke dynamics, fingerprint,
face, etc.

• Trust: Applied cryptography, embedded systems, randomness and information protec-
tion.

In addition, these two research groups develop numerous software (platforms and mobile
applications) to secure user’s authentication and different PhD thesis, master projects and
graduation projects are conducted in the field.

II.3 Keystroke dynamics

II.3.1 Presentation

The analysis of a user’s typing dynamics is a behavioral biometric technique usually
described as the way the user manipulates the keyboard. In [Araújo et al., 2005], the authors
introduced typing dynamics analysis as a low-cost, non-intrusive authentication method that
has a distinct advantage over password authentication: it cannot be lost, forgotten, or stolen.
Although the same can be said about morpholgical modalities, they often require expensive
and even intrusive equipment to collect biometric data.

Thereby, keystroke dynamics has become a very promising area of research which has
been published in several scientific articles, dealing with many topics such as the choice
of extracted characteristics, classification methods, the combination with other biometric
modalities (multi-modality) as shown in Figure II.3.

This behavioral biometric modality combines the verification of the syntactic accuracy
of the password with the conformity with the behavior of the legitimate user, his/her typing
rhythm on the keyboard. Various studies have been conducted to highlight this modality. The
two main coexisting families are:

• Static text authentication where the user always types the same text. This text is
usually a pre-defined password. It may be common for all users (a passphrase), or it
may be a user specific password. This is the most utilized category in the literature
[Hocquet et al., 2007, Idrus et al., 2014, Killourhy & Maxion, 2010, Giot et al.,
2011b, Tsimperidis et al., 2018].
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Figure II.3 – Number of scientific publications per year focusing on keystroke dynamics

• Free text authentication where the user does not always enter the same text [Bours &
Barghouthi, 2009, Xi et al., 2011, Messerman et al., 2011, Pinto et al., 2014, Bours
& Mondal, 2015, Nilsen, 2018, Aljohani et al., 2018]. There may be continuous
authentication, which constantly checks the identity of the user. Challenge-based
authentication should be considered in some applications. It asks the user to a enter
text he/she does not know in advance as a challenge to avoid the replay attack. The
server needs to verify also whether the user typed the assigned text.

In both cases, the extracted characteristics describing the user’s typing manner are
practically the same. They are detailed in the next section.

II.3.2 Extracted features

The characteristics to describe a user’s keystroke dynamics are generally timing events
acquired by the Operating system (OS). Other studies consider video and sound data that are
collected by recording users during data collection [Vural et al., 2014].

Regardless the typed text, the keyboard provides the times when each key is pressed
and released. From these basic data, the characteristics are extracted and used as input for
the classification algorithm. To describe the keystroke dynamics of one user, researches are
frequently interested in temporal information extracted from digraph transition times. In
this manuscript, we have adopted the following notation to represent extracted features. The
figure II.4 shows these characteristics in a graphical way, wherein the arrows downwardly
and upwardly respectively denote the moments of pressure and release of each key password:
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• PP: time difference between the press events of two successive keys;

• RR: latency between the release events of two successive keys;

• RP: time duration between a one-key release event and its following key press event. It
is also called "flight time";

• PR: time duration between a one-key press event and its following key release event;

• Dwell: time duration between a one-key press event and its release event. This
characteristic represents the time that the hold key is pressed and it is also called by
some authors "dwell time".

P A S S W O R D

Dwell RP RRPPPR

Figure II.4 – Characteristics of the keystroke dynamics.

The feature vector is then generated based on these characteristics. An example of a
feature vector for an expression of four keys is shown in Figure II.5. A summary of the
features used in some research works in the literature is presented in the table II.1. From the
data in this table, we generated the histogram represented on the Figure II.6. It is clear that,
the characteristics Dwell (dwell time) and RP (flight time) are the most used ones.

Another feature that can be used is the pressure on the keys [Chang et al., 2012, Elftmann,
2006], but extracting this feature requires adding a specialized hardware. However, with the
increasing availability of touchscreen devices, the costs of using this feature may decrease
over time. In [Chang et al., 2012], the pressure on a touch screen smartphone was evaluated
in a keystroke dynamics scenario. Error rates decreased from 12.2% to 6.9% when pressure
was also taken into consideration.

Studies have applied pre-processing steps to improve the quality of the acquired character-
istics and subsequently improve the recognition performance. In [Montalvao et al., 2006], an
equalization process on the feature vector is applied. Authors argue that this transformation
can highlight important aspects of the feature vector, as has been observed in other areas,
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Table II.1 – Extracted features of keystroke dynamics modality

Reference Extracted features
[Muliono et al., 2018] Dwell, RP, PP
[Bours & Ellingsen, 2018] PP, RR, RP, PR
[Pisani et al., 2017] RR, PP, RP, PR
[Monaro et al., 2017] Dwell, RR, PP, RP, PR and total typing time
[Idrus et al., 2014] RR, PP, RP, PR
[Giot et al., 2012a] RR, PP, RP, Dwell
[Chang et al., 2012] Dwell, RP, PP, pressure
[Killourhy & Maxion, 2012] Dwell, PP
[Giot et al., 2011b] RR, PP, RP, PR
[Killourhy & Maxion, 2010] Dwell, PP, RP

Dwell, PP
Dwell, RP

[Giot et al., 2009b] PP, RR, RP, PR and total typing time
[Killourhy & Maxion, 2008] Dwell, RP
[Hosseinzadeh & Krishnan, 2008] Dwell

PP
RR
RR, PP
Dwell, PP
Dwell, RR
Dwell, RR, PP

[Rodrigues et al., 2006] RP, Dwell
RP, Dwell, RR, PP

[Bartlow & Cukic, 2006] Dwell, RP (average, standard deviation, sum, mini-
mum and maximum), including the Shift key

[Montalvao et al., 2006] PP
PP with equalization

[Chang, 2006] Dwell, RP
[Montalvão Filho & Freire, 2006] PP

PP with equalization
[Gunetti & Picardi, 2005] Dwell, RP
[Yu & Cho, 2003] Dwell, RP
[Monrose & Rubin, 2000] Dwell, RP
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Figure II.5 – Example of a feature vector

such as digital communications and image processing. According to the reported results, the
application of this equalization has improved performances (lower error rate) obtained by
several previous research works.

Moreover, in [Giot et al., 2011b, Giot et al., 2009b] authors evaluated the use of dis-
cretization of feature vectors. Each value of the feature vector is discretized in five ranges.
The discretized data are then classified by a two-class SVM, using both negative and positive
samples for training. According to the authors, the application of SVM with this discretiza-
tion has obtained lower error rates than other approaches seen in the literature (for example,
neural networks and distance-based classifiers).

In [Hosseinzadeh & Krishnan, 2008], authors performed a comparative analysis of seven
sets of characteristics. All combinations using Dwell, PP and RR were considered. The
best performance was achieved by the Dwell and RR characteristics. However, the RP
functionality has not been taken into account in their analysis. RP is one of the most used
features in previous works, as shown by the Figure II.6.

Another study on extracted characteristics was carried out by [Bartlow & Cukic, 2006].
In addition to considering the key "characters", this study was also interested in the shift key.
In passwords that contain a mix of lowercase and uppercase letters, the shift key is obviously
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used. Therefore, the analysis of the shift key can be an additional factor to rank the users.
According to their tests, the analysis of the shift key reduces the error rates of the classifier.

An important factor concerning the keystroke dynamics modality is the resolution of
the captured data. In the MS Windows operating system, for example, the notification
of keyboard events, such as pressing and releasing keys, does not distinguish differences
less than 15.625 ms. In [Killourhy & Maxion, 2008], the effect of different resolutions
was evaluated. This evaluation used an external device with a resolution of 100µs. High
resolution data was then used to derive samples at lower resolution. As expected, the higher
resolution data imply better classification accuracy. Low resolutions (eg, 100 ms) resulted in
error rates of 50%, which is a very poor recognition performance.

Recently in [Monaro et al., 2017], the authors asked the users to complete the required
fields with their real autobiographical information (identity, birth, residence, education,
interests, etc). Then, using keystroke dynamics analysis they detect users providing false
personal information during the authentication process to an online service. As previous
work on user authentication considered that a timing resolution from 0.1s to 1µs is sufficient
to capture typing characteristics, data were time stamped and measured up to microseconds
(µs) precision.
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II.3.3 Biometric databases

Most studies in biometric field dealing with keystroke dynamics modality require a
biometric database for the validation of the obtained results. Some datasets identified in the
literature are shown in Table II.2. The availability of suitable public datasets for the evaluation
of biometric systems is generally limited. A possible reason is the intrinsic difficulty to
acquire data for such kind of study as these datasets need to contain several samples per
user. Ideally, they should be obtained at different acquisition sessions, either with different
acquisition conditions or separated by a certain amount of time, to justify the use of adaptive
biometric systems. But for keystroke dynamics, public databases are a little more available.
For our experiments, we chose three datasets, among the most widely used in the literature,
to validate the proposed contributions:

• GREYC 2009 [Giot et al., 2009a]: This database was developed within the GREYC
Laboratory. One hundred and thirty-three users participated in the creation of this
database and typed the same password "greyc laboratory". Only 100 of them partici-
pated in five acquisition sessions during two months and provided 60 samples per user.
These samples were focused on in our experiments. This database were chosen to
compare our results with those of the experiments in [Giot et al., 2011b]. The database
contains both raw and extracted data. The extracted features are : PP, RR, RP and PR.

• GREYC-Web [Giot et al., 2012a]: For this database, 118 users were involved in its
creation and typed the same password "SÉSAME". Only 45 among them participated in
five sessions and provided 60 patterns. These users were the subject of our experiment.
Another advantage of this dataset is that it contains two types of biometric data: (i)
imposed password common to all users, as for 100% of other public databases, (ii)
passwords chosen by the user with impostor attacks provided by other users, unlike
other public databases. This database contains both raw and extracted data which are :
PP, RR, RP and PR.

• CMU [Killourhy & Maxion, 2010]: This database includes data of 51 users. They
typed the same password 400 times during eight acquisition sessions. The time between
each session is at least one day, but the average value is not specified (it can be expected
to be different depending on the users). This is the public dataset with the greatest
number of samples per user, but many acquisitions are made over a relatively short
period (50 acquisitions per session).The defined password was ".tie5Roanl". The
database contains only the extracted Dwell, PP and RP characteristics. We opted for
this database because it was frequently used in the literature.
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Table II.2 – Datasets used in the evaluation of keystroke dynamics biometric modality.

Datasets # Users Period/Sessions
GREYC [Giot et al., 2009a] 100 2 months (5 sessions)
GREYC-Web [Giot et al., 2012a] 118 more than 1 year
CMU [Killourhy & Maxion, 2010] 51 8 sessions

By analyzing the existing literature, as shown in Table II.2, we found that the number
of users and the time period or sessions among the datasets differ significantly. While it is
generally true that a higher number of users and longer sessions can result in a more reliable
expected performance, the variability in the nature and context of experiments means that it
is extremely difficult to compare different adaptation techniques.

II.3.4 Classification algorithms

A number of algorithms have been used to classify users depending on their keystroke
dynamics modality. Table II.3 shows the algorithms studied in some selected publications. It
is important to note that, apart from the machine-learning algorithms known in the literature,
such as Support Vector Machines (SVM) [Giot et al., 2009b] and Nearest Neighbor [Killourhy
& Maxion, 2008], some authors have proposed new algorithms [Monrose & Rubin, 2000,
Gunetti & Picardi, 2005]. These new algorithms have also been used in comparisons made
by subsequent research [Montalvao et al., 2006].

The statistical classifiers have been deeply used. They are based on calculating statistical
characteristics from training samples (e.g. mean, median and standard deviation) and
comparing them to those of the new introduced query using various distance metrics. Three
main statistical classifiers have been used [Hocquet et al., 2007, Bleha et al., 1990a, Revett
et al., 2006, Boechat et al., 2007]in the litterature.

The use of static and free text has been tested in [Monrose & Rubin, 2000]. The authors
conducted different experiments to validate the idea of classifying users according to their
typing rhythm based on various distances and probability tests. Their experiments validate
the approach, reaching a precision rate of 92.14%.

As discussed in previous studies [Killourhy & Maxion, 2010, Giot et al., 2009b], the
number of training samples can affect the performance of the classifier. In general, the greater
their representativity, the higher the classification accuracy. In [Chang, 2006], a method for
generating new learning samples based on the genuine user has been proposed. The samples
are generated using time domain resampling and using the Discrete Wavelet Transform
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Table II.3 – Classifiers used in the keystroke dynamics modality.

Reference Classifieur
[Muliono et al., 2018] Deep learning

SVM (Linear, RBF and Polynomial)
[Pisani et al., 2016] K Nearest Neighbor
[Giot et al., 2012a] Based on Gaussian distribution [23]
[Chang et al., 2012] Statistical [Boechat et al., 2007]
[Killourhy & Maxion, 2012] Statistical

Disorder-based
[Giot et al., 2011b] SVM

Statistical
Neural network
Distance-based classifier

[Killourhy & Maxion, 2010] Nearest neighbour
Outlier count (z-score)
Manhattan distance

[Giot et al., 2009b] SVM
Statistical
Classifier based on Euclidean distance
Classifier based on Hamming distance

[Killourhy & Maxion, 2008] Nearest neighbour
Neural network
Mean-based classifier

[Hosseinzadeh & Krishnan, 2008] Gaussian Mixture Model (GMM) + Leave one out
method

[Montalvao et al., 2006] [Bleha et al., 1990b]
[Monrose & Rubin, 2000]
[Gunetti & Picardi, 2005]

[Montalvão Filho & Freire, 2006] [Bleha et al., 1990b]
[Monrose & Rubin, 2000]
1D-Histogram and 2D-Histogram

[Rodrigues et al., 2006] Hidden Markov Model (HMM)
Statistical

[Bartlow & Cukic, 2006] Random Forests
[Chang, 2006] Tree-based with Euclidean distance
[Gunetti & Picardi, 2005] Proposed Methods: R Measure and A Measure
[Yu & Cho, 2003] SVM

2-layer and 4-layer Auto Associative Multi-layer
Perceptron (AAMLP)

[Bleha et al., 1990b] Euclidean distance
Weighted and non-weighted probability
Bayes
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(DWT). Although this method generates more samples, an unresolved question is whether
these new samples actually imply better representativeness.

The use of numeric keypads has been analyzed by [Killourhy & Maxion, 2008] since quite
a long time. An advantage of using digital keyboards is that it would be easier to implement
typing dynamics technology in mobile devices, such as cell phones, which typically have
only one keypad nowadays. The authors conducted experiments using eight passwords,
obtaining an ERR of 3.6%. As mobile touch devices have become ubiquitous everyday tools,
research is increasingly interested in user’s interaction with touchscreen keypads [Buschek,
2018, Li & Bours, 2018].

New detectors were tested in [Yu & Cho, 2003], especially an autoassociative multilayer
percetron (AAMLP) and a one-class support vector machine (one-class SVM). According to
their experiments, error rates were similar for both novelty detectors. However, the one-class
SVM was more efficient in terms of computational resources usage.

In addition, studies using Neural Networks (NN) have been frequently applied to
keystroke dynamics since 1993 [Brown & Rogers, 1993, Bleha & Obaidat, 1993, Ana-
gun, 2006, Ahmed & Traore, 2014]. NN have the disadvantages of requiring a huge number
of labeled samples (from genuine and impostor users) in order to create a reference template.
Moreover, in this case, parameters setting is rather complex. The efficiency of Support Vector
Machine (SVM) classifiers have been also tested [Sang et al., 2004, Giot et al., 2011b].
They have been used in the context of either one-class or two-class classification (where
impostor attacks were considered). For one-class classification, the authors proposed in [Yu
& Cho, 2004] the Genetic Algorithm (GA)-SVM wrapper approach. They improved the
SVM classification by adding the GA to perform features selection. Accordingly, the created
user’s model demonstrated a better performance, but the number of samples used to create
the reference was large as well (equal to 50).

Many other classifiers have been used in the literature for keystroke dynamics authentica-
tion systems, such as the Bayesian classification [Bleha et al., 1990a], the Hidden Markov
Model [Rodrigues et al., 2005] or the K Nearest Neighbor (KNN) classifier. For example, the
authors in [Pisani et al., 2016] opted for the KNN classifier to distinguish genuine samples
from impostor ones, and then to create two galleries: a positive one, to save samples classified
as genuine, and a negative one, to collect samples classified as an impostor. The positive
gallery was composed of 40 samples captured during the enrollment phase.

II.3.5 Performance metrics

Most studies reported in the literature that evaluate keystroke dynamics biometric systems
use the same metrics as those used to assess the majority of biometric modalities [Himaga &
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Kou, 2008, Precise Biometrics, 2014, Poh et al., 2014]. In this section, we first discuss the
standard metrics for the evaluation of biometric systems.

• FNMR (False Non-Match Rate): the rate of genuine attempts that were wrongly
classified as impostor. In order to report the global FNMR, the average from all users
can be computed. Another approach is to simply compute the metric considering the
amount of genuine queries from all users at the same time. Note that when the number
of genuine queries is different among the users, these two methods to compute the
global FNMR can result in different values. The first method gives the same weight to
each user, while the second method gives more weight to those users which contain a
higher number of genuine queries.

A related metric is FRR (False Rejection Rate), which his similar to FNMR, but
also considers the FTA (Failure to Acquire Rate), is shown in Equation (II.1). FTA
measures the rate in which a biometric system fails to obtain a biometric sample.

FRR = FT A + FNMR × (1 − FT A) (II.1)

• FMR (False Match Rate): rate of impostor attempts that were wrongly classified
as genuine. The global FMR, generally measures the average FMR from all users.
Another approach is to simply compute the metric considering the amount of impostor
queries from all users at the same time. Note that when the number of impostor queries
is different among the users, these two methods to compute the global FMR can result
in different values. In some evaluation methodologies, the number of impostor queries
is a function of the amount of genuine queries. In the first method, each user has the
same weight. In the second method, users which contain a higher number of impostor
queries receive a higher weight).

A related metric is FAR (False Acceptance Rate), which has almost the same definition
of FMR, similarly to the case of FNMR/FRR. FAR also considers the FTA, as shown
in Equation (II.2).

FAR = FMR × (1 − FT A) (II.2)

• HTER (Half Total Error) and balanced accuracy: HTER is defined by Equation (II.3)
as the average between FNMR and FMR. This metric combines the results from both
FNMR and FMR in a single value, making the performance evaluation simpler. This
measure can also be defined using the balanced accuracy BAcc [Masso & Vaisman,
2010], defined in Equation (II.4).
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HT ER =
FNMR + FMR

2
(II.3)

BAcc = 1 − HT ER (II.4)

• EER (Equal Error Rate): it is the value when FNMR is equal to FMR. This metric can
be seen as a particular case of HTER, when FMR = FNMR.

• Area Under Curve (AUC): It is the measure of the area of the surface below the
Detection Error Trade-of (DET) curve (FMR versus FNMR).

These metrics can also be obtained over time. The study in [Rattani et al., 2011] claims
to be the first one in the area to compute results over time, instead of just reporting it globally.
Later, a plot to report performance metrics over time in the context of a biometric data stream
has become common for several works.

A metric specific to describe the performances of continuous authentication for keystroke
and mouse dynamics is proposed in [Bours & Mondal, 2015]. Indeed, two new metrics
Average Number of Impostor Actions ANIA and Average Number of Genuine Actions
ANGA respectively comparable to FMR and FNMR in a static authentication. In fact, for an
impostor user i, when tested against the template of genuine user g and is locked out k times
after N1,N2, . . . ,Nk actions, then the ANIAi

g is defined as :

ANIAi
g =

1
k

k∑
j=1

Nk (II.5)

An ANIA of the attacks of M − 1 different imposters (all users except the genuine one)
against each genuine user g is then equal to:

ANIAg =
1

M − 1

M−1∑
i=1

ANIAi
g (II.6)

In general, the ANIA against all the users of the system equals to:

ANIA =
1
M

M∑
g=1

ANIAg (II.7)

Accordingly the ANGAg of a user g is calculated when his own query is tested against his
own template. The average of the ANGAg values over all users is then defined as the ANGA
of all the system.
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II.3.6 Recognition errors

This section describes some sources of variability in the biometric features over time,
which can result in template aging, motivating the need for performing adaptation in biometric
systems. In the machine learning literature, the term concept drift is often used with the
meaning of change in the profile of the data distribution. In the context of biometrics, the drift
is caused by a plethora of factors or sources of variability. Moreover, previous experimental
results have shown that this variability can be different depending on the user [Poh et al.,
2015a, Pisani et al., 2015b, Rattani et al., 2009]. As illustrated in Figure II.7, one month later
(green curves) the keystroke dynamics of the user is quite different from the initial one (red
curves).

(a) Time between two keys pressure. (b) Time between two keys release.

(c) Time between one pressure and one release. (d) Time between one release and one pressure.

Figure II.7 – Intra-class variability of a user after one month

This variability may be due to different errors like :

• Errors related to enrollment/changing conditions: The model may not represent the
user’s characteristics when limited amount of samples is available during the enrollment
stage. Besides, the acquisition conditions during the recognition phase may not be
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the same as those of the enrollment phase. For example, aspects like illumination,
humidity, noise, movement and portability of the device can vary between enrollment
and recognition phases [Poh et al., 2009b]. Another source is the use of devices with
distinct characteristics for enrollment and recognition (cross-device matching). This
can occur, for example, in face recognition, when the quality of images produced by
high-resolution cameras and web-cameras can be very different [Poh et al., 2010a].
In fingerprint recognition, this can occur when matching two samples collected using
thermal and optical fingerprint sensors.

Self occlusions (e.g., make up) and occlusions due to the use of accessories (e.g., body-
piercing ornament and jewelries, or glasses) can also introduce intra-class variability.
Furthermore, the interactions between a user and each sensor can be different. In
keystroke dynamics, to type on different keyboard layouts can produce different
keystroke dynamics [Jain et al., 2016]. Emotion and health can also impact the
recognition performance of a biometric system, especially in the behavioral modalities.
Emotional states, such as happiness, anger and stress can change the speech sound.

• Errors related to time/aging: Both physical and behavioral biometric modalities are
subject to changes related with time/aging. Physical modalities are subject to injuries,
wrinkles, speckles, weight loss and gain. Moreover, illnesses and/or their associated
treatments can also permanently alter samples in the speech and fingerprint modalities.
Behavioral modalities features are subject to habit changes. As time elapses, the
user may become familiar with the system, changing how he/she use the system. For
example, in keystroke dynamics recognition, the users may change their typing rhythm
over time [Montalvão et al., 2015].

The sources of intra-class variability can increase false non-match errors. When genuine
users are increasingly rejected by the system, they can become annoyed, negatively impacting
the usability of the system. Manually re-enrollment of the users periodically can be a solution,
although it is costly. Two other alternatives to decrease the impact of intra-class variability
are using multi-modal biometric systems and soft biometrics.

Multi-modal biometric systems use multiple biometrics [Ross et al., 2006] to reduce
the overall system error can occur at different levels (sensor, characteristics, score, rank
or decision). Despite its efficiency, the configuration of system parameters become more
complex, increasing the cost of the recognition system. The fusion can also be inconvenient
to the user, since it can increase the overall authentication time and require the user to learn
to use several sensors.
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Different from classical biometrics, soft biometrics [Jain et al., 2004b] can improve
biometric system performance by using characteristics that are not unique and not permanent
to sufficiently differentiate between two individuals, though they can support the recognition
decision. Examples are gender, age, ethnicity, skin, hair color or educational level [Idrus
et al., 2014, Tsimperidis et al., 2018].

Both multi-modal and soft biometric systems can decrease the impact of template aging
by increasing the recognition accuracy. However, they are also subject to template aging. For
example, in multi-modal system combining fingerprint and face recognition, when biometric
features for both biometric modalities change, the recognition performance can degrade over
time.

This thesis focuses on adaptive biometric systems, which are able to automatically adapt
the biometric reference over time. They are sometimes referred to as template update in the
literature. Next sections of this manuscript focus on adaptation strategies.

II.4 Conclusion

Biometric systems, especially those based on a behavior analysis are able to differentiate
the identity of an individual according to what he / she is doing. They are a promising
alternative to limit the identity usurpation. Among the characteristics to be analyzed in
order to define the user’s behavior, this work focuses on keystroke dynamics as a biometric
modality.

In this chapter, the main goal was to identify the state of the art of keystroke dynamics
modality. To accomplish this task, we identified the advantages and disadvantages of using
typing dynamics, characteristics extracted from typing data, classification algorithms, and
performance metrics.

The biometric features used for users recognition should satisfy certain properties, as dis-
cussed at the beginning of this chapter. However, recent studies have shown that permanence
is not satisfied for several biometric modalities [Rattani, 2010, Giot et al., 2011b, Pisani,
2017]. This is due to several reasons, including aging and changing conditions, as mentioned
in section II.3.6. In order to solve this problem, adaptive biometric systems have been
proposed. This is a relatively new field of study in biometrics.
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III.1 Introduction

With the widespread of computing and mobile devices, authentication using biometric
traits like face, iris, voice and keystroke dynamics has received greater attention in logical
access control like web services authentication. Although biometric systems usually provide
good solutions, the recognition performance tends to be affected over time due to changing
conditions and aging of the biometric data, resulting in intra-class variability. Adaptive
biometric systems, which adapt the biometric reference over time, have been proposed to
deal with such intra-class variability.

This chapter provides the most up-to-date and complete discussion on adaptive biometric
systems we are aware of, including formalization, terminology, adaptation strategies and
open challenges. This work is a part of a survey that was achieved in collaboration with P.H.
Pisani, R. Giot, N. Poh and A.C.P.L.F. De Carvalho.

III.2 Biometric systems

III.2.1 Generalities

A biometric system is a pattern recognition system that acquires a biometric query sample
of the claimant and extracts its biometric features to compare them with a previously stored
biometric reference corresponding to the claimed identity in a biometric database [Jain et al.,
2004a]. A biometric reference is also known as a model or template.

Many studies have shown that biometric features may change over time [Roli et al., 2008]
and, consequently, the biometric reference may no longer represent the biometric features
of the user. This phenomenon is known as template aging [Jain et al., 2016]. As a result,
the recognition performance of the biometric system can degrade over time. An adaptive
biometric system adapts the user reference to deal with template aging [Roli et al., 2008, Poh
et al., 2012].

This section presents the terminology adopted in this manuscript and describes the main
parameters of an adaptive system.

III.2.2 Terminology

A biometric system has two main phases: enrollment and test/recognition. In the enroll-
ment phase, defined by Equation (III.1), the system receives a set of enrollment samples
E j for each user j ∈ J and outputs its biometric reference re f j, where J is the set of user
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indexes registered in the biometric system. The enrollment is performed for all registered
users and each biometric reference is stored in a biometric database R = {re f j | j ∈ J}.

re f j ← enroll
(
E j

)
(III.1)

Another phase is the test/recognition. In this phase, the system receives a biometric
query sample q and returns the identity label of the recognized user. A query is a biometric
sample acquired to perform recognition. The test/recognition can operate in verification or
identification modes [Jain et al., 2016].

In the verification mode, defined in Equation (III.2), a query q is compared to the
biometric reference re f j of a claimed user index j using a set of parameters θveri f y

j . The output
is obtained from a classification algorithm, which returns the predicted label labelp for the
biometric query: genuine or impostor. The set θveri f y

j refers to the parameters adopted for the
classification algorithm. Some implementations output a score from the comparison of a
query q to the biometric reference re f j and afterwards return the class label by comparing this
score to a decision threshold value. In this case, the decision threshold would be an element
in the set of parameters θveri f y

j . Other classification algorithms may need other parameters,
such as the kernel parameters for a support vector machine [Schölkopf et al., 2001].

labelp ← test.veri f y
(
re f j,q, θveri f y

j

)
(III.2)

In the identification mode, defined in Equation (III.3), a query q is presented to the
biometric system, which outputs a set of user indexesUid using the set of parameters θidenti f y

j ,
such asUid ⊆ J . The set θidenti f y

j refers to the parameters of the classification algorithm used,
as in the case of the verification mode (e.g. decision threshold). Note thatUid can be a null
set {} when the query is classified as an impostor.

Uid ← test.identi f y
(
R,q, θidenti f y

j

)
(III.3)

In addition to the previously discussed enrollment and test/recognition phases, which
are applicable to any conventional biometric system, an adaptive biometric system can also
operate in adaptation mode. In the adaptation phase, the adapt process, as specified in
Equation (III.4), adapts the biometric reference re f j(t) using a set of biometric samples for
adaptationA, along with a set of adaptation parameters θadapt

j . The output of the adaptation
process is the adapted biometric reference re f j(t+1) .

re f j(t+1) ← adapt
(
re f j(t),A, θ

adapt
j

)
(III.4)
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The set of samples used for adaptation, A, is collected during the system operation.
Usually, it only contains samples classified as genuine by the test/recognition process. As
discussed later, some studies only include samples classified as genuine with high confidence
in this set [Roli & Marcialis, 2006, Giot et al., 2011a]. Thus, an additional adaptation
threshold that is more stringent than the decision threshold can be used. In this case, the
adaptation threshold would be an element in the set of parameters for adaptation θadapt

j .
Depending on the adaptation strategy, there may be different parameters, as it will be
discussed in the next sections of this chapter.

Several adaptation strategies consider that the biometric reference re f j is composed of
several biometric samples/templates (see III.3.1). This set of samples/templates is sometimes
referred to as a gallery [Giot et al., 2012c, Biggio et al., 2012, Rattani et al., 2008a]. In line
with this concept, adaptation can be defined as the addition and removal of samples/templates
from a gallery.

The adaptation process can be performed either online or offline [Poh et al., 2012]
(see III.3.4). In the online adaptation, the process is executed after each query sample is
recognized by the biometric system. Basically, the adaptation process is triggered every time
that the test/recognition is performed. In the offline adaptation, however, instead of triggering
the adaptation process after each query recognition, the system waits to store a batch of
biometric samples in the setA before adapting the biometric reference.

In this manuscript, the behavior of adaptation is determined by the adaptation strategy,
which has an adaptation criterion (see III.3.2) and an adaptation mechanism (see III.3.5).
As a conclusion, an adaptive biometric system is composed of a classification algorithm and
an adaptation strategy.

The following table III.1 presents the recurrent terminology used within this manuscript.

III.3 Strategies to adapt the Biometric Reference

A number of adaptation strategies have been proposed in the literature. This chapter
presents the most comprehensive collection of adaptation strategies that we are aware of.
No previous review [Poh et al., 2009b, Seeger & Bours, 2011, Didaci et al., 2014, Poh
et al., 2012] in the field of adaptive biometric systems have provided such an extensive and
complete overview of the field.

This section presents adaptation strategies found in the literature, based on five distinctive
aspects, as shown in Figure III.1(a):

• Reference modeling: How the biometric reference is modeled;
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Table III.1 – Recurrent symbols of the manuscript

Terminology Meaning/ Signification
J Set of user indexes registered in the bio-

metric system
j ∈ J A registered user’s index
re f j Biometric reference of a user j

R = {re f j | j ∈ J} The set of biometric references stored in
the biometric system (biometric database)

q A biometric query sample
labelp Predicted label for the biometric query:

genuine or impostor
θveri f y Set of parameters for the test/recognition

process (verification mode)
θidenti f y Set of parameters for the test/recognition

process (identification mode)
A Set of samples for the adaptation process
θadapt Set of parameters for the adaptation pro-

cess

• Adaptation criterion: The criterion chosen to perform adaptation or not;

• Adaptation mode: The method employed to assign the labels: supervised or semi-
supervised;

• Adaptation periodicity: The periodicity in which the adaptation process is applied:
online or offline;

• Adaptation mechanism: How the adaptation is performed (when the adaptation is
satisfied).

The five aspects illustrated by Figure III.1(b) are further discussed in the next subsections.

III.3.1 Reference Modeling

Biometric reference modeling strategies can impact the way it is adapted/updated over
time. For instance, a speech signal can be represented as Mel-frequency cepstral coefficient
(MFCC) features, whose density is modeled using a Gaussian Mixture Model. Thus, the



III.3 Strategies to adapt the Biometric Reference 47

 

Distribution 
of temporal 

errors 

Supervised 

Semi-
supervised 

Online 

Offline 

Set of references 

Gallery 

Single reference 

Additive 

Combined 

Selective 
Replacement 

Prediction 
of score 

deviation 
 

Score 

normalization

m 

Adaptive 

thresholds 

Double 

threshold 
Oracle 

Quality 

index 

Condition-

Sensitive 

Query 

Acceptance 

Mixed 

criteria 

 
Usage of 

detectors / 
samples 

 

Enhanced 
template 
update 

 

3.5 Adaptation 

mechanism 

3.1 Reference 

modeling 

3.3 Adaptation 

mode 

3.4 Adaptation 

periodicity 

3.2 Adaptation 

criterion 

 

Adaptation 
strategy 

(a) Map of adaptive biometric systems aspects.

ref j(t)

Current
biometric
reference

Adaptation mode

Adaptation strategy

Adaptation 

criterion 

Adaptation 

mechanism 

Adapt the 
reference?

Query or batch 
of queries

Adaptation periodicity

ref j(t+1)

Adapted
biometric
reference

(b) Generic work-flow diagram of biometric adaptation process.

Figure III.1 – Overview of an adaptive biometric system.



48 Chapter III. Strategies to adapt the Biometric Reference

resulting reference is a statistical model [Reynolds & Rose, 1995] storing the biometric
features. Another example is when the k-nearest neighbor (k-NN) [Bishop, 2006] algorithm
is used by a biometric system. In this case, its reference is a set of samples. A related concept
is adopted when the biometric is a set of detectors, as in [Pisani et al., 2015b]. Each type of
reference modeling may need distinct adaptation mechanisms.

Overall, three main categories of biometric references can be found in previous studies
on adaptive biometric systems.

III.3.1.1 References containing a single sample/template

The biometric reference [Grabham & White, 2008] can be one good quality capture
acquired at enrollment phase. Although this category has been used for physical modalities,
it may not be reliable for behavioral biometrics. This is because a single sample is unlikely
to capture enough variability usually present in behavioral modalities.

III.3.1.2 References built from several samples/templates

Several samples are acquired during the enrollment phase and stored in a gallery. In
some studies, each sample is known as a detector [Pisani et al., 2015b]. Using galleries in
adaptative biometric systems is a very common approach as it will be shown in the next
sections.

III.3.1.3 Set of references

Several references per user are organized to represent different aspects of the biometric
data [Lumini & Nanni, 2006]. Other examples are the biometric references used in [Giot et al.,
2012c] and [Pisani et al., 2016], which contain two sub-references to support recognition and
adaptation.

III.3.2 Adaptation Criterion

The adaptation criterion determines if the adaptation should be performed or not. Several
criteria have been proposed in the literature:

• Call for an oracle: The decision to use a query for adaptation is taken by an or-
acle; it can be a human operator [Sukthankar & Stockton, 2001, Vandana, 2007]
(supervisor/administrator).

• Query acceptance: Each accepted query is used to adapt the reference [Wang et al.,
2012, Kang et al., 2007].
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• Double threshold: In addition to the decision threshold already present for the recogni-
tion process, an additional adaptation threshold is adopted. Query samples that meet
the adaptation threshold are used for adaptation. The adaptation threshold is usually
more stringent than the decision threshold [Rattani, 2010]. Consequently, only highly
confident queries are used for adaptation.

• Quality index: A quality index is used as part of the criterion to decide whether a given
query is used for adaptation or not [Noval & López, 2008, Poh et al., 2010b].

• Condition-sensitive: It performs adaptation if conditions which are not already present
in the biometric reference, are collected during operation, e.g., pose and illumination
[Pagano et al., 2015].

• Prediction of score deviation: This criterion analyses the scores of the biometric system
to estimate when the biometric reference should be adapted [Carls, 2009].

• Distribution of temporal errors: In an operational scenario, false non-matches can bring
useful information to the system [Serwadda et al., 2013]. For example, a continuous
sequence of false non-matches could mean that the reference has aged and the changes
in the biometric features should be tracked.

• Mixed criteria: It is used under a multi-modal biometric system. For example, if
the system uses a modality with high intra-class variability and another modality less
affected by intra-class variations [Roli et al., 2007], adaptation can be performed if
the number of non-matches by the first modality reaches a given threshold, while
the second modality accepts the user. It can also occur at the feature level [Kekre &
Bharadi, 2009] by using invariant features to confirm the adaptation of the variant
features.

• Enhanced template update (ETU): A system can be designed to model an individual
with two sub-references: one genuine reference modeling the biometric features of
the target individual, and one impostor reference, for the features of everyone else.
Hence, each user is represented by two references. They can be used in different ways
to support verification and adaptation. Both references are adapted over time. The
genuine reference is adapted using queries accepted as genuine, while the impostor
reference is adapted using the rejected query samples [Pisani et al., 2016].

• Usage of detectors/samples: It is based on the concept of checking the usage of
biometric samples, referred to as detectors, in the biometric reference for matching.
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The general principle is to discard unused detectors over time. Some variations were
proposed [Pisani et al., 2015b, Pisani et al., 2014, Pisani et al., 2015a]. In Usage
Control/Usage Control R/Usage Control 2 (see Section III.3.5), adaptation occurs if
some detectors have not been recently used. Usage Control S additionally checks if at
least two detectors match the input query.

• Score normalization: As discussed in Section III.2.2, some implementations output a
score from the comparison of query sample to the biometric reference. Hence, based
on this score, a threshold is applied to output the label (genuine or impostor) and
to decide whether adaptation should occur. Score normalization [Poh et al., 2009a]
refines the output score and, consequently, allows a better choice of thresholds. A
preliminary study on the use of score normalization for supervised adaptation to handle
different acquisition conditions is shown [Poh et al., 2010b]. Later, the use of score
normalization in adaptive biometric systems was further studied in [Pisani et al., 2017],
considering a biometric data stream context.

The first criterion requires an oracle to tell when adaptation should be performed [Sukthankar
& Stockton, 2001] and it is not always feasible. Query acceptance is a simple criterion
that avoids this problem [Kang et al., 2007]. However, it is prone to allow the inclusion
of wrongly classified query samples into the genuine biometric reference. An alternative
to deal with this problem is the double threshold [Rattani, 2010], which uses an additional
threshold for adaptation. Nevertheless, the double threshold criterion usually only captures
little variability, since only query samples with a high probability of the genuine user trigger
the adaptation process. Although these methods can decrease the risk of wrongly including
impostor samples in the genuine biometric reference, the expected performance gain thanks
to the adaptation strategy is likely to be limited. Quality-index may also be used to only add
high quality data to the biometric reference [Noval & López, 2008, Poh et al., 2010b].

The condition-sensitive criterion provides a way to avoid including redundant information
into the biometric reference. Because it only adds new samples if new conditions are identified
during the operation of the biometric system [Pagano et al., 2015].

It can also be possible to predict when adaptation should be performed by checking the
score deviation [Carls, 2009]. However, the prediction may not be accurate if the biometric
features from the users start to change in a different way over time. The distribution of errors
over time also may indicate the need to adapt the biometric reference [Serwadda et al., 2013].
Nevertheless, this approach assumes that false non-matches can be detected reliably over
time. For example, in border control, customers who have a refused entry would have to go
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Table III.2 – Comparison of adaptation criteria

Criterion Advantages Drawbacks

Call for an oracle - The method is secure; - There is no extra cost;

[Sukthankar & Stock-
ton, 2001]

- Uses only close genuine biometric
samples from the biometric reference.

- It is manual.

Query acceptance
[Wang et al., 2012]

- The method is simple and allows au-
tomatic adaptation.

- Can include characteristics of wrongly
accepted impostors in the genuine bio-
metric reference.

Double threshold [Rat-
tani, 2010]

- Can reduce the inclusion of impostors
samples in the biometric reference by
an additional (more stringent) adapta-
tion threshold.

- Is only able to capture little variability.

Quality Index [Noval &
López, 2008, Poh et al.,
2010b]

- Avoids the use of low quality samples
in the adaptation;

- Need to define the quality index,
which can be modality dependent.

- Can replace low quality data acquired
in the enrollment procedure.

Condition-sensitive
[Pagano et al., 2015]

- Excludes redundant information and
can potentially reduce the size of the
reference, saving computer resources.

- Sensitive to the the initial samples in
the reference as well as the updating
threshold.

Prediction of score devi-
ation [Carls, 2009]

- Prediction of the moment to update
the biometric reference.

- If the pattern in which the biometric
features change over time, the predic-
tion may not be accurate.

Distribution of temporal
errors [Serwadda et al.,
2013]

- Monitors the actual error to mitigate
it.

- Requires a way to measure false non-
matches over time.

Mixed criteria [Roli
et al., 2007]

- Uses additional information from mul-
tiple biometric modalities.

- Requires more than one biometric
modality, increasing costs.

Enhanced template up-
date [Pisani et al., 2016]

- Combines a genuine and an impostor
gallery to support both test and adapta-
tion

- Classification errors may poison both
galleries

Usage of detec-
tors/samples [Pisani
et al., 2015b, Pisani
et al., 2014, Pisani et al.,
2015a]

- Keeps the biometric reference updated
by the patterns most frequently and re-
cently present in the queries.

- May remove true user patterns from
the biometric reference if they are not
frequently present in the queries.

Score normaliza-
tion [Poh et al.,
2010b, Pisani et al.,
2017]

- Refine the output score for a better
threshold choice.

- Require additional data to normal-
ize scores (a development or a cohort
database depending on the normaliza-
tion procedure).
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to a separate queue for manual identity verification. Therefore, closely monitoring the error
over time constitutes a viable criterion for adaptation.

Using multiple sources to support the adaptation criterion is observed in the mixed
criteria [Roli et al., 2007] and the enhance template update [Pisani et al., 2016]. The former
works with multiple biometric modalities in a multi-modal system, while the latter stores a
genuine and an impostor model to support the decision to whether or not perform adaptation.

The usage of detectors for matching can also provide information to decide whether
adaptation should be started. Various ways of using this information have been proposed
[Pisani et al., 2015b, Pisani et al., 2014, Pisani et al., 2015a].

Score normalization is an alternative to refine the output score in adaptive biometric
systems [Poh et al., 2009a, Poh et al., 2010b]. As a result, a better threshold choice can be
done, improving the performance of the adaptation criterion. A previous work has applied
score normalization to several adaptation strategies in a biometric data stream context [Pisani
et al., 2017]. Applying score normalization requires additional data, either a development or
a cohort database depending on the normalization procedure.

As discussed in this section, there are several criteria that can be adopted to decide
whether adaptation should be performed or not. They rely on different aspects, such as score,
quality, errors and usage. However, they are still prone to adversarial attacks, which could
introduce impostor patterns into the genuine biometric reference [Biggio et al., 2015, Biggio
et al., 2012]. To summarize the discussion so far on adaptation criteria, Table III.2 highlights
their advantages and drawbacks.

III.3.3 Adaptation mode

Query samples are usually unlabeled. In some cases, however, the true label is received
some time after the biometric system has classified them, similarly to data stream mining
applications [Žliobaitė et al., 2015]. When query samples are unlabeled, semi-supervised
adaptation is performed. When the data are labeled, supervised adaptation techniques can be
used. This section briefly describes both techniques as two adaptation modes for adaptive
biometric systems: supervised and semi-supervised adaptation.

III.3.3.1 Supervised adaptation

It uses true labels of the query samples for adaptation that are provided by an oracle, also
known as an operator in this context. It has been extensively studied in the literature [Freni
et al., 2008a, Freni et al., 2008b, Giot et al., 2011b, Uludag et al., 2004] as it is an easier
approach, particularly when compared to its semi-supervised counterpart.
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The samples can be obtained from different ways. For example, several enrollment
sessions can be applied to each user [Uludag et al., 2004]. The newly acquired samples
at each enrollment session are labeled and can be used to adapt the biometric reference.
Of course, this approach can be time-consuming and expensive as it requires individuals
to participate in several enrollment sessions. Moreover, an operator must supervise these
enrollments to avoid errors. Another way to obtain labels for supervised adaptation is by
manually labeling the captured data when the authentication system is in use, e.g., in an
operator-assisted face recognition system [Sukthankar & Stockton, 2001]. However, this
approach is not applicable to many contexts of application, especially when the operator or
supervisor is not available.

III.3.3.2 Semi-supervised adaptation

It is a more realistic scenario [Jiang & Ser, 2002, Ryu et al., 2006, Poh et al., 2015b, Pisani
et al., 2016, Bours & Ellingsen, 2018], where the labels are provided automatically by the
biometric system. Note that in this case, however, the obtained labels can be wrong. It
is semi-supervised as the system has the labelled samples from the initial enrollment and
the unlabelled query samples. The concept is to automatically label the query samples
in order to use them during the adaptation. There are two main ways to perform it: self-
training [Rattani et al., 2011] or co-training [Blum & Mitchell, 1998]. Self-training is related
to mono-modal authentication systems and uses samples classified by the same classifier to
retrain it, while co-training is related to multi-modal authentication systems and consists of
using the knowledge of one modality to help to label the other one.

To summarize, semi-supervised methods automatically provide labels to the collected
queries, thanks to the classifiers, whereas supervised ones rely on an oracle. The main
drawback with the semi-supervised approach is that these labels can be wrong in case of
recognition errors.

In this manuscript, we are only interested in semi-supervised adaptation as it is a more
realistic and complex scenario. An immediate question is: how often should the update be?
This is presented next.

III.3.4 Adaptation periodicity

The adaptation process does not have to be performed each time a query satisfies an
adaptation criterion (see Figures III.2 III.3). There are two main settings: delayed/offline
adaptation and real time/online adaptation. We detail each of them in the following sections.
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Figure III.4 – Offline/Delayed vs Online/Real-time adaptation. The figure is simplified to correspond to the
case where the adaptation criterion takes the decision just after the recognition process.

III.3.4.1 Offline/delayed adaptation

When the process is performed offline, queries are collected and stored in a buffer, before
processing them as whole in a batch procedure. It is a common approach in the literature.
However, the choice of the adaptation frequency remains an open issue. Which is the best
strategy to adopt: waiting until enough samples have been collected or waiting for the
expiration of a specific delay? As discussed later in Section III.3.6, the periodicity have been
determined by the dataset division of sessions in previous studies. However, it is still an open
question in practical application scenarios.

III.3.4.2 Online/real-time adaptation

This setting systematically performs adaptation after the decision criterion is met (often
taken after the acceptance of the query [Giot et al., 2011b, Pisani et al., 2015a]). As the
process is iteratively done, query per query, it mainly fits the semi-supervised adaptation
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mode, where the adaptation system uses the label computed by the verification method on
the selected query.

Offline adaptation has the advantage of a minimum performance impact during the recognition
process, since no adaptation is done while the system is operating. The adaptation process
can then be triggered when the system is not in use. Online adaptation, however, adds more
processing time during the recognition process, as both recognition and adaptation processes
are performed jointly. Nevertheless, it must also be noted that the online adaptation does not
need to store a buffer, hence, it consumes less memory than the offline setting.

The adaptation periodicity can also affect the choice of the adaptation mechanism. Some
mechanisms were designed for offline adaptation, such as Graph min-cut (see Section III.3.5)
that needs a buffer of queries to build a graph, as part of its adaptation process.

III.3.5 Adaptation mechanism

As discussed before, an adaptation strategy is composed of various modules, and the last
one to deal with is the adaptation mechanism, which finally adapts the biometric reference.
All adaptation mechanisms presented in this section are suitable for references that are
composed by a set of templates/samples, sometimes named as gallery [Giot et al., 2012c,
Biggio et al., 2012, Rattani et al., 2008a]. Hence, the adaptation mechanism basically
adds samples to the gallery and/or removes samples/templates from it. The reference is
re-computed once the gallery is adapted. Four categories of adaptation mechanisms are
presented here:

• Additive mechanisms receive a set of samples and add all (or some) of them to the
gallery;

• Replacement mechanisms receive a set of samples and add all (or some) of them to the
gallery but also remove some samples from the gallery;

• Multi-gallery mechanisms manage two (or more) galleries and can also apply distinct
adaptation mechanisms to each gallery;

• Selection mechanisms select the most important samples in gallery to keep in order to
avoid the gallery to indefinitely increase its size over time.

The above adaptation mechanisms are presented in the next sub-sections, discussing their
advantages and drawbacks.
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III.3.5.1 Additive mechanisms

An additive mechanism is based on the concept of progressively adding new patterns to
the biometric reference. This mechanism can encode a higher variability of the user data,
which can consequently avoid false non-match due to genuine intra-class variability.

One of the first attempts in this direction was proposed by Uludag et al. [Uludag et al.,
2004]. The proposed mechanism, called augment-update, adds a set of new samples to
the gallery of the user. Their experiments consider this new set of samples to be genuine.
Subsequent works on the additive mechanism considered using the predicted labels instead
of the true labels for adaptation. Some of them are described in the following:
• Self-Update: as described in [Rattani et al., 2013b], it is an implementation of self-

training [Rattani et al., 2011] for adaptive biometric systems [Roli & Marcialis, 2006]. It has
been extensively studied in the literature [Roli & Marcialis, 2006, Roli et al., 2008, Rattani,
2010, Giot et al., 2012a, Giot et al., 2011a, Akhtar et al., 2014]. The general concept is to
add query samples classified as genuine to the gallery as depicted in algorithm 1. Usually,
only those samples that meet a genuine similarity score above a given adaptation threshold
are added to the gallery. Hence, Self-Update is commonly implemented together with double
threshold, as described in Section III.3.2.

Algorithm 1: Self-Update [Roli & Marcialis, 2006] adaptation strategy for user j. We
consider the implementation described in [Rattani et al., 2013c].

Input : re f j(t),A, θ
adapt
j = {adaptationThreshold}

Output :re f j(t+1)

1 All samples with similarity score similarityS core above the adaptationThreshold are
used to adapt the gallery.

2 A′ ← {ai ∈ A | similarityS core(re f j(t), ai) > adaptationThreshold}
3 G(re f j(t+1))← G(re f j(t)) ∪A

′

Another related adaptation mechanism is the Growing window [Kang et al., 2007].
Growing window works similarly to Self-Update, however, it does not use the additional
adaptation threshold. It can also be understood that it assumes that both decision and
adaptation thresholds are the same. As a result, all queries classified as genuine are added to
the gallery.

Concerning the adaptation periodicity, in the literature, Self-Update is frequently applied
in a scenario of offline adaptation, where a batch of queries is received for adaptation from
time to time. Conversely, Growing window is usually applied in online adaptation scenarios,
where the adaptation process is executed after each query is processed.
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• Graph min-cut for template update: it is an adaptation mechanism proposed by [Rattani
et al., 2008a, Rattani et al., 2013a], which uses the max-flow/graph min-cut algorithm [Blum
& Chawla, 2001]. This adaptation mechanism, detailed in algorithm 2, receives a batch
of query samples and joins them to the current gallery of the user. Based on this data,
a graph is generated, where each node represents a sample and each weighted link is a
similarity score between samples. The graph-min cut divides the graph into two parts: source
(genuine samples) and sink (impostors samples). The source represents the new gallery. The
way that graph is generated implies that no sample in the initial gallery is removed during
adaptation (all samples from the gallery are assigned infinite weight to the source/genuine
node), justifying the categorization as an additive mechanism.

Algorithm 2: Graph min-cut adaptation strategy [Rattani et al., 2008a, Rattani et al.,
2013a] for user j.

Input : re f j(t),A, θ
adapt
j = {k}

Output : re f j(t+1)

1 A′ ← G(re f j(t)) ∪A
2 graph← buildGraph(A′, k)
3 (Ssource,Ssink)← applyGraphMinCut(graph)
4 By definition, G(re f j(t)) is a subset of Ssource.
5 G(re f j(t))← S

source

• Adaptation using harmonic function: a work from [Rattani et al., 2012] proposes an
adaptation mechanism using harmonic functions, which makes use of probabilistic semi-
supervised learning introduced in [Zhu et al., 2003]. Similarly to the previous adaptation
mechanism based on graph min-cut, this adaptation mechanism also receives a batch of query
samples and joins them to the current gallery of the user. The joined set of samples is used
to compute an adjacency matrix, which is then applied to obtain an harmonic function for
the set of query samples. The obtained harmonic function is employed to determine which
queries are added to the gallery.

Self-update refers to a category of adaptation mechanisms that uses only one classifier [Roli
& Marcialis, 2006, Rattani et al., 2013b]. It is vulnerable to the mistaken introduction
of impostor samples in the gallery. Although, this problem is faced by most adaptation
mechanisms, its impact is worst in the case of additive ones, since the gallery keeps growing
and none sample is removed.

Of course, this could be avoided by a very high adaptation threshold. Nevertheless, this
also means that only those genuine queries very close to the current reference would be
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accepted for adaptation. Since they are already close to the reference, they could not bring
enough new information and larger changes would not be captured. This illustrates that the
configuration of the adaptation threshold deeply impacts the performance of the adaptation
mechanism.

Considering the graph-based mechanism, its authors claim they can capture larger intra-
class variabilities than Self-Update [Rattani et al., 2013a]. However, this mechanism as well
as the one based on harmonic functions [Rattani et al., 2012] needs more computer resources
than Self-Update, and the computations can become intensive, particularly if the gallery and
the set of queries are large.

Commonly, additive mechanisms have the drawback of indefinitely increasing the size
of the gallery, which could lead to problems in terms of memory usage. A possible way
to mitigate it would be to use selection mechanisms described in Section III.3.5.4 after the
additive mechanism is executed. Table III.3 summarizes the advantages and drawbacks
discussed here.

Table III.3 – Comparison of additive mechanisms.

Mechanism Advantages Drawbacks
Self-Update [Roli &
Marcialis, 2006]

- Simple to implement. - The adaptation threshold can be difficult
to define: low values may imply in several
impostor samples included in the gallery
while high values can prevent proper adap-
tation to genuine data.

Graph min-cut for tem-
plate update [Rattani
et al., 2008a, Rattani
et al., 2013a]

- Able to capture higher intra-class
variability than Self-Update.

- The computations can become intensive.

Adaptation using Har-
monic function [Rattani
et al., 2012]

- Obtain good performance even
with few labeled samples.

- The computations can become intensive.

III.3.5.2 Replacement mechanisms

This mechanism adds new samples to the gallery over time, similarly to an additive one.
However, it is also able to remove the samples to avoid the problem of indefinitely increasing
the gallery size.

Again, one of the first attempts following this concept is from Uludag et al. [Uludag et al.,
2004], which presented the batch-update. This mechanism receives a set of samples and uses
it as the new gallery. Thus, the entire previous gallery is discarded. In their experiments,
it was considered that the true label is provided for the new set of samples, which may not
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be a feasible assumption in practice. Several replacement mechanisms are presented in this
section. All of them assume that the query or the set of query samples received as input are
classified as genuine.
• Sliding/Moving window: this mechanism was described in [Kang et al., 2007], though

it can also be found under the name of First In First Out (FIFO) [Freni et al., 2008a, Scheidat
et al., 2007]. This mechanism receives a set of query samples (the set can contain just one
sample) and adds them to the gallery by removing the same amount of oldest samples, thus
keeping the gallery size constant over time as depicted in algorithm 3. Double threshold
criterion can be used with this mechanism. As a consequence, only samples that obtain a
similarity score above a given adaptation threshold is added to the gallery. Another related
adaptation mechanism is adopted in [Grabham & White, 2008], which works similarly to
growing window until the gallery reaches a maximum size, when it uses a sliding window
for the adaptation.

Algorithm 3: Sliding/Moving window [Kang et al., 2007] adaptation strategy for user
j.

Input :re f j(t),A = {q}, θ
adapt
j = {labelp}

Output : re f j(t+1)

1 if labelp = genuine then
2 g′ ← oldest(G(re f j(t)))
3 G(re f j(t+1))← G(re f j(t)) − {g

′}
4 G

(
re f j(t+1)

)
← G

(
re f j(t+1)

)
∪ {q}

5 end

• Replacement based on MDIST and DEND: Freni et al. [Freni et al., 2008a] proposed
replacement mechanisms based on the operating principle of MDIST and DEND clustering
algorithms [Uludag et al., 2004]. The general concept is to add a new query sample and
remove another one from the gallery, thus keeping the same gallery size after the adaptation.
For such, all possible gallery variations are evaluated (each time a different sample is
removed). The scores among all samples are computed for each gallery variation. This
process is also performed for the unmodified gallery. Then, the average score for each gallery
is obtained. Based on this average score, the gallery is chosen according to one of the two
strategies here: for MDIST, the gallery which has the maximum average score is chosen,
whereas, for DEND, the chosen reference is the one corresponding to minimal average score.
• Least frequently used (LFU): LFU was presented in [Scheidat et al., 2007, Freni et al.,

2008a] and consists in adding the received query sample to the gallery and removing the
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least frequently used ones. It is mandatory to maintain the number of times each sample of
the gallery is used to authenticate the user.
• Least recently used (LRU): LRU proposes to replace the least recently used sample of

the gallery by the new query sample [Scheidat et al., 2007]. A first method is to use a time
stamp for each sample of the gallery, but it can be too expensive. The authors then suggest to
use the clock algorithm, a special case of the second-chance approach [Scheidat et al., 2007].
• Extended replacement: it computes a relevance attribute for each sample of the gallery

based on its usage for matching and performs replacement based on this attribute [Scheidat
et al., 2007]. The sample with lowest value for this relevance attribute is removed and the
new query sample is added to the gallery.
• Usage Control: it is based on the concept of checking the usage of detectors (biometric

samples) in the biometric reference for matching to perform adaptation. The more recently
(and frequently) used detectors are kept in the biometric reference, while the remaining
detectors are removed. Four versions are proposed: Usage Control, Usage Control R, Usage
Control S and Usage Control 2 [Pisani et al., 2015b, Pisani et al., 2014, Pisani et al., 2015a].
If the adaptation criterion for them is met, a detector (or a set of detectors) is removed from
the biometric reference. In Usage Control/Usage Control R, the mechanism first selects
those detectors less recently used. Among them, the less frequently used is removed. Usage
Control S works similarly, but it has a more stringent adaptation criterion (at least two
detectors should match the input query). Usage Control 2 can remove more than one detector
since it removes all detectors not recently used. As as example, the algorithm for Usage
Control/Usage Control R is shown in Procedure 4.
• Transfer learning-based: in [Çeker & Upadhyaya, 2016, Çeker & Upadhyaya, 2017],

the authors presented adaptive mechanisms based on transfer learning to update SVM
classifiers [Taylor & Stone, 2009]. Given an SVM trained on the enrollment data, the
adaptive mechanism is capable of adapting it using later acquired labeled samples. Note
that these mechanisms do not use a gallery as the other ones presented here. However, as it
replaces the older user model with the newer adapted using transfer learning, it is classified
as a replacement mechanism in this manuscript.

As stated in the beginning of this section, a key advantage of replacement mechanism is
that it can avoid increasing the gallery indefinitely over time. The crux of maintaining
the gallery size is that when a new sample is added to the gallery, another one has to be
removed. This section presented several ways to choose which samples are replaced. The
simplest one is sliding window/FIFO [Kang et al., 2007, Scheidat et al., 2007], which simply
replaces the oldest sample(s). This mechanism assumes that the most recent samples are more
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Algorithm 4: Usage control R [Pisani et al., 2015a] adaptation strategy for user j.

Input : re f j(t),A = {q}, θ
adapt
j = {labelp,MAX_RU}

Output : re f j(t+1)

1 if labelp = genuine then
2 (Checks the detectors from the newest to the oldest one.) for i← 1 to

length(G(re f j(t))) do
3 if di matches q then
4 usageC(di)← usageC(di) + 1 The attributes (usageC, usageR) of the first

usageR(di)← MAX_RU detector that matches the query are
5 Y ← G(re f j(t)) − {di} updated (usually MAX_RU = 10).
6 for k ← 1 to length(Y) do
7 if usageR(dk) > 0 then
8 usageR(dk)← usageR(dk) − 1
9 end

10 end
11 break
12 end
13 end
14 L← {di ∈ G(re f j(t)) | usageR(dk) ≤ 0}
15 if L , ∅ then
16 L′ ← { order(di ∈ L) by usageC(di)} All the detectors in Y are ordered by

usageC. G(re f j(t+1))← G(re f j(t)) − {l
′
1} The detector with the lowest usageC

is removed G(re f j(t+1))← G(re f j(t+1)) ∪ {q} and the accepted query is added
to the biometric reference.

17 else
18 re f j(t+1) ← re f j(t) Note that no detector is added nor removed (just the

parameters usageC and usageR are updated).
19 end
20 end
21 end

representative, though it may not be always the case. Table III.4 summarizes the discussion
for the replacement mechanisms.

MDIST and DEND [Freni et al., 2008a] can be computationally intensive if the gallery is
large, since it requires to compute the scores among all samples for several gallery variations.
Since MDIST maintains the gallery with the highest average score, the obtained gallery has
less variability among the samples than the gallery obtained by DEND (which keeps the
gallery with lowest average score). The authors mention that MDIST is based on the idea of
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Table III.4 – Comparison of replacement adaptation mechanisms.

Mechanism Advantages Drawbacks

Sliding window [Kang et al.,
2007]

- Simple, just replaces the oldest
samples considered less representa-
tive.

- Oldest samples may be more rep-
resentative.

MDIST and DEND [Freni
et al., 2008a]

- MDIST can exploit common rep-
resentative characteristics, while
DEND is able to represent larger
intra-class variability.

- Both can be computationally inten-
sive.

Least frequently used
(LFU) [Scheidat et al., 2007]

- Replace less frequently used pat-
terns.

- May not replace a frequent used
sample that becomes unrepresenta-
tive.

Least recently used
(LRU) [Scheidat et al.,
2007]

- Replace less recently used patterns. - May be expensive, since it requires
to store when each sample is used.

Extended replacement [Schei-
dat et al., 2007]

- Assigns a relevance attribute to
each sample, that can be used to re-
place less representative samples.

- Problem similar to LFU, since it
may not replace a frequent used sam-
ple that becomes unrepresentative.

Usage Control [Pisani et al.,
2015b, Pisani et al., 2014,
Pisani et al., 2015a]

- Does not change the biometric ref-
erence if all patterns are being used,
which could mean that the user char-
acteristics have not changed.

- May not properly adapt the ref-
erence if all patterns were recently
used and the user starts to change its
characteristics.

Transfer learning [Çeker &
Upadhyaya, 2016, Çeker &
Upadhyaya, 2017]

- Can adapt SVM models without
the need to retrain it.

- Uses labeled samples to adapt the
SVM model.

keeping samples that are very similar to exploit common representative characteristics, while
DEND is able to represent larger intra-class variability.

A technical report [Scheidat et al., 2007] presented three adaptation mechanisms that
replace samples considering their usage, although none of them were experimentally eval-
uated. LFU replaces the most frequently used sample. If a sample is too frequently used
for some time, it can be hard to replace it later if it becomes unrepresentative of the current
user data. Moreover, older samples tend to be more used, making the mechanism subject
to replace newer samples over time, which may not be the most suitable choice. LRU then
replaces the least recently used, but it may be expensive to run the mechanism since it needs
to know when each sample is used. Extended replacement then assigns a relevance attribute
to each sample and replaces the ones with lowest values for this new attribute. Nevertheless,
this mechanism is subject to a problem similar to LFU, since a too much used sample which
becomes unrepresentative will not be easily replaced.
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Usage Control keeps only those detectors more frequently and recently used. It can
overcome some of the issues of the previous algorithms based on usage of samples as
discussed in [Pisani et al., 2015b]. For example, even if a detector/sample is used too many
times and becomes unrepresentative, it could be quickly replaced if it is not used for a
while. Hence, even if the frequency of usage of a detector/sample is the highest among all
samples, it can be replaced if it has not been used recently. Usage Control 2 [Pisani et al.,
2015a] implements another interesting proposal which is the possibility of having a gallery of
variable size. Some versions of Usage Control does not always replace a sample [Pisani et al.,
2015b]. If it considers that the current biometric reference is representative, the replacement
does not occur, as described in the criterion Usage of detectors/samples in Section III.3.2.

Recent works use transfer learning to adapt SVM models [Çeker & Upadhyaya, 2016].
The proposal obtained good results. However, the evaluation methodology described in these
works mention that the samples used for adaptation are labeled. Nevertheless, in a practical
scenario, the true labels may not be available. It is still unclear whether it can obtain good
performance if predicted (and not true) labels are used for adaptation.

III.3.5.3 Multi-gallery mechanisms

A multi-gallery mechanism manages two or more galleries/models to perform adaptation
and can apply different adaptation mechanisms to each one. This can be interesting to com-
bine the benefits of different adaptation mechanisms into a single one. Some implementations
are presented next:
• Double parallel: it consists of using two galleries, where one is adapted by Growing

window and the other is adapted by Sliding window [Giot et al., 2012c] as depicted in
algorithm 5. The classification and adaptation then considers the average of the scores
obtained by both galleries. An incremental version of this mechanism, designed for the case
when the classification algorithm of [Magalhães et al., 2005] is used was presented in [Pisani
et al., 2015a]. This new version allows to use the growing window without the unlimited
memory issue.
• Co-Update: it is an implementation of the concepts from Co-training [Blum & Mitchell,

1998] to adaptive biometric systems [Roli et al., 2007, Rattani et al., 2008b]. We consider the
implementation described in [Rattani et al., 2013c]. Co-Update, as described in algorithm 6,
is applied to a multi-modality scenario, with two galleries, one for each biometric modality
(e.g. one for face and another for fingerprint). It assumes that two biometric samples (one
for each modality) are provided for each query. Then, if the classifier trained for modality
A confidently classifies the corresponding query, the query for modality B is added to the
corresponding gallery. The opposite also applies, if the classifier trained for modality B
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Algorithm 5: Double parallel [Giot et al., 2012c] adaptation strategy for user j.

Input : re f j(t),A = {q}, θ
adapt
j = {adaptationThreshold}

Output : re f j(t+1)

1 This strategy keeps two models: T 1 and T 2.
2 score1← similarityS core(T 1(re f j(t)),q)
3 score2← similarityS core(T 2(re f j(t)),q)
4 f usionS core← (score1 + score2)/2

5 if f usionS core > adaptationThreshold then
6 This strategy manages two galleries: G1 and G2. After the adaptation of the

galleries, the models T 1 and T 2 are recomputed.
7 G1(re f j(t+1))← adaptUsingGrowing(G1(re f j(t),q)
8 G2(re f j(t+1))← adaptUsingS liding(G2(re f j(t),q)
9 end

confidently classifies the query for its modality, the query for modality A is added to the
gallery of modality A. Co-Update is similar to the cross-training mechanism presented in [Poh
et al., 2014, Poh et al., 2015b]. Another application of Co-training to adaptive biometric
systems was presented in [Zhao et al., 2011], where a single modality was considered (face
recognition). In their work, each of the two classifiers considered a different view of the face
image.

Poh et al. [Poh et al., 2014] also discuss the application of Co-training to adaptive
biometric systems. These works studied a system where there is one gallery for face
recognition and another for speech recognition. Taking advantage of the availability of two
modalities, logistic regression combines the face and speech scores to obtain the final fused
score which is then used to infer the samples for adaptation. The proposed strategy was
named fusion-based co-training.

Algorithm 6: Co-Update adaptation strategy for user j. This chapter considers the
implementation described in [Rattani et al., 2013c].

Input : re f j(t),A, θ
adapt
j = {adaptationThreshold1, adaptationThreshold2}

Output : re f j(t+1)

1 A′1 ← {a1
i ∈ A

1 | similarityS core(re f j
2
(t), a

2
i ) > adaptationThreshold2}

2 A′2 ← {a2
i ∈ A

2 | similarityS core(re f j
1
(t), a

1
i ) > adaptationThreshold1}

3 G1(re f j(t+1))← G
1(re f j(t)) ∪A

′1

4 G2(re f j(t+1))← G
2(re f j(t)) ∪A

′2
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• Enhanced template update (ETU): it was recently proposed to make use of all queries,
including those classified as impostor [Pisani et al., 2016], whereas adaptation mechanisms
are generally only interested in the queries classified as genuine. In order to implement it,
ETU manages two galleries, one for queries classified as genuine and another for queries clas-
sified as impostor. The ETU framework then employs both galleries to support classification
and adaptation.
• Ensembles: El Gayar et al. [El Gayar et al., 2006] proposed to use several classifiers

in an ensemble configuration to address the problem of having a limited amount of labelled
enrollment samples. Another work which also applied ensembles for adaptive biometric
system is [Pisani et al., 2015c], where different adaptation mechanisms were combined in an
ensemble.

One of the first multi-gallery mechanisms proposed in the literature is Co-Update [Roli et al.,
2007, Rattani et al., 2008b, Rattani et al., 2013c], applied to multi-modal systems. This
adaptation mechanism can adapt the biometric reference to larger changes due to the use
of two biometric modalities. For example, in case of an abrupt change in one biometric
modality, while the other does not change, the biometric system would be able to capture this
large change and adapt the reference. Otherwise, an adaptation mechanism that uses just one
gallery would not be able to decide whether this abrupt change is an impostor attempt or not.

Later, Double parallel [Giot et al., 2012c] was proposed. It manages two galleries for
a single modality, each adapted by a different adaptation mechanism. One gallery uses
Growing, thus preserving the initial user patterns, while the other gallery uses Sliding, thus
maintaining only the most recent user patterns. As a result, Double parallel can combine the
models obtained from both galleries to support classification and adaptation. Since Double
Parallel uses Growing, one of its galleries can increase without any limit over time. In [Pisani
et al., 2015a], the authors proposed an incremental solution to deal with this problem for the
classification algorithm of [Magalhães et al., 2005].

Most adaptation mechanisms only consider galleries for genuine data and, as a conse-
quence, they discard queries classified as impostor. Enhanced template update (ETU) [Pisani
et al., 2016], conversely, manages a genuine and an impostor gallery. Hence, all queries,
even those classified as impostor, are used for adaptation. ETU then combines both galleries
to support classification and adaptation.

Ensembles of classifiers have also been used in the literature of adaptive biometric
systems [El Gayar et al., 2006, Pisani et al., 2015c]. Although the use of additional classifiers
can result in higher use of computer resources, the robustness of the classification and
adaptation can be increased. The fusion-based co-training proposed by Poh et al [Poh
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et al., 2014] can be considered as an example of this approach as well, where a classifier is
associated with a biometric modality and both results are fused.

A summary of the discussion is shown in Table III.5.

Table III.5 – Comparison of multi-gallery adaptation mechanisms.

Mechanism Advantages Drawbacks

Co-Update [Roli et al., 2007,
Rattani et al., 2008b, Rattani
et al., 2013c]

- Can adapt the reference even for
large intra-class variation.

- Requires two biometric modalities
working in parallel with aging pat-
terns not correlated.

Double parallel [Giot et al.,
2012c]

- Can combine two adaptation strate-
gies, one preserving initial patterns
(Growing) and another maintaining
only the latest patterns (Sliding).

- Can increase the amount of used
memory indefinitely, although a
solution for a specific classifica-
tion algorithm has been presented
in [Pisani et al., 2015a].

Enhanced template up-
date [Pisani et al., 2016]

- Manages a genuine and an impos-
tor gallery, making use of all re-
ceived queries to adapt them.

- Classification errors can result in
unreliable information on both gal-
leries.

Ensembles [Pisani et al.,
2015c]

- Increased classification reliability
by the use of ensembles.

- Needs more processing time than
single classifier system due to the
use of several of them in the ensem-
ble configuration.

III.3.5.4 Selection mechanisms

Selection mechanisms, also named template selection [Freni et al., 2008b], are used to
select representative samples/templates for the user. These mechanisms can be used to reduce
the size of the user gallery after adaptation [Uludag et al., 2004]. Some implementations are
presented next:
• Selection based on clustering [Uludag et al., 2004]: it is based on the algorithms used

for replacement shown in Section III.3.5.2. DEND applies a hierarchical clustering algorithm,
which outputs a dendrogram on which a pre-defined number of clusters is identified. For
each cluster, the medoid element (sample) is kept in the user gallery, while the other samples
are discarded. The other mechanism, MDIST, sorts the samples by their average distance to
all other samples. Those samples with the lowest average distance are kept in the user gallery,
while the others are discarded. For both mechanisms, the number of samples to be kept needs
to be defined beforehand. This number should be lower than the amount of samples in the
gallery.
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• Selection based on editing: in [Freni et al., 2008b], the authors proposed the use of
algorithms based on nearest neighbor algorithm to select the most representative samples for a
user. The following algorithms were used: Condensed NN (CNN) [Hart, 1968], Selective NN
(SNN) [Ritter et al., 1975], Reduced NN (RNN) [Gate, 1972] and Edited NN (ENN) [Wilson,
1972].

Both methods, selection based on clustering [Uludag et al., 2004] and based on editing [Freni
et al., 2008b], can be used to reduce the gallery size after adaptation. This can be particularly
important for additive mechanisms, such as Self-Update [Roli & Marcialis, 2006, Rattani
et al., 2013b]. Freni et al. [Freni et al., 2008b] compared both types of mechanisms and
showed that editing mechanisms can obtain better performance than clustering mechanisms.
A summary of this discussion in shown in Table III.6.

Table III.6 – Comparison of selection mechanisms.

Mechanism Advantages Drawbacks

Selection based
on clustering

- Can reduce the size of the gallery using
clustering algorithms.

- Can be computationally intensive for
large galleries.

Selection based
on editing

- Can reduce the size of the gallery using
NN-based algorithms.

- When strong gallery size limitations are
imposed, the output gallery can be nega-
tively impacted.

- Can be computationally intensive for
large galleries.

III.3.6 Evaluation methodology

Sadly, there is no standard methodology to evaluate adaptive biometric systems in the
literature [Giot et al., 2012d]. A number of methodologies that differ in several aspects have
been adopted, as discussed in the next sections.

III.3.6.1 Impostor samples in the adaptation process

Recent studies dealing with adaptation consider that the set of biometric samples for
adaptation A (Equation (III.4)) is a set of samples without the true label. Thus, only
labels obtained from the classification algorithm are available, so they are subject to wrong
prediction from the classifier. This better simulates a practical scenario where true labels are
usually not available. Consequently, the setA may contain impostor samples resulted from
misclassification.
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However, early investigation on adaptive biometric systems did not consider the pos-
sibility of impostor attack during the adaptation. According to [Poh et al., 2012, Rattani
et al., 2013c], impostor attacks during the adaptation process were not considered in [Roli &
Marcialis, 2006, Roli et al., 2007]. Another study that did not considered impostor samples
in the setA is [Kang et al., 2007]. As mentioned in [Giot et al., 2011a, Giot et al., 2012b],
the experiments in [Kang et al., 2007] only employed true genuine samples for adaptation.
In [Kang et al., 2007], each user was enrolled using 10 samples and, for test, there were 75
genuine samples plus 75 impostor samples. Although not entirely clear, the graphs from
Figure 4 of that paper indicate that a separate set of genuine samples was used for adaptation.

III.3.6.2 Ratio of impostor samples

A related aspect is the ratio of impostor samples that can be part of the adaptation set
A. A high ratio can result in several errors during the adaptation process. In [Rattani et al.,
2013c], the adaptation setA contains 10 genuine samples and 5 random impostor samples,
so the ratio of impostors is 33.3%. Another study [Giot et al., 2012c] adopted the ratio of
30% of impostor samples. It assumes a scenario where the genuine user is the most frequent
user of the biometric system, which is a valid assumption in general.

Later, different ratios of impostor samples were investigated in [Giot et al., 2013] where
the samples from the first session are used for enrollment. Then, the samples from the
remaining sessions are used for test and adaptation using pools. A pool is defined as a
sequence of query samples, containing both genuine and impostor. The ratio of impostors in
the pools ranged from 30% to 80%. One pool was generated for each session in the dataset.
By doing this, the performance metrics could be assessed over time, one for each session.

The same ratio of impostors of 30% was also adopted in [Pisani et al., 2015a, Pisani
et al., 2016, Pisani et al., 2017]. However, in these studies, a distinct method was adopted
to select the impostor samples. The evaluation methodology adopted there, named user
cross-validation for biometric data streams, divides the list of user indexes using cross-
validation, so k folds are obtained (each fold is a disjoint sub-set of the user indexes). One
fold is regarded as the unregistered set of users and the remaining folds form the registered
set of users J . The experiments are executed for all k combinations of folds, so all users
are considered once as an unregistered user. Among the 30% of impostor samples, there is
50% probability of obtaining an impostor sample from the unregistered set (external attack
simulation) and 50% probability of obtaining a sample from another user i , j (internal
attack simulation) as impostor.
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III.3.6.3 Adaptation to time vs condition

Template aging is one of the main motivations for adapting a biometric reference. This is
clear in keystroke dynamics in which the typing rhythm changes over time. However, the
biometric reference may need adaptation to deal with different acquisition conditions too,
which is not necessarily due to aging. For instance, in face recognition, if the enrollment uses
samples of just one pose (e.g. frontal), the system would need to adapt the reference later to
include variations in the pose of the same user.

The methodology described in the last section from [Giot et al., 2013] is one that mainly
deals with adaptation due to aging. This is because the first session is used for training and
next ones are left for test and adaptation, following the chronological order.

Conversely, the experiments in [Poh et al., 2014] is an example of methodology which
mainly deals with adaptation to different conditions. That work used a dataset which has
data under three different conditions: controlled (sessions 1-4), degraded (sessions 5-8) and
adverse (sessions 9-12) [Bailly-Bailliére et al., 2003]. Session 1 was used for enrollment,
then sessions 2 to 4 for test. Next, session 5 was used for adaptation and sessions 6 to 8
for test. Finally, session 9 was used for adaptation and sessions 10 to 12 for test. Impostor
samples were included in the adaptation sets too.

Adaptive biometric systems can be used to adapt the biometric reference to changes
either due to time or due to different capture conditions. Some studies on physical biometric
modalities seem to mainly deal with changing conditions instead of changes uniquely due to
time, which is the case of that study.

III.3.6.4 Poisoning attacks to adaptation

Poisoning attacks in adaptive biometric systems consist of progressively introducing
impostor samples in the adaptation process, in a way that the biometric reference is modified
until it can better recognize an impostor. As a result, it may also not be able to recog-
nize the actual genuine user anymore. Such attacks are not simulated in most evaluation
methodologies for adaptive biometric systems.

The work that claims to be the first to raise such issue in the area is [Biggio et al., 2012].
In order to evaluate this attack, the authors used a dataset for face recognition containing 60
samples per user. A random subset of 10 samples was used for the enrollment and another
subset of 10 samples was used for parameter tuning. The remaining 40 samples were then
used for the test. Then, a separate set of poisoning samples was used to adapt the biometric
reference. Nevertheless, their work only considered that the biometric reference is adapted
with impostor patterns from the generated poisoning set. This may not correspond to a
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practical scenario, since both genuine and impostor samples can be used for adaptation and,
consequently, the negative effect of poisoning could be reduced.

III.3.6.5 Separate and joint sets for test/adaptation

Most previous evaluation methodologies can be divided into two groups: separate sets or
joint set for test and adaptation. A previous review in the area adopted this criteria to classify
performance assessment approaches [Poh et al., 2009b]. In the separate sets approach, the
adaptation and test sets are disjoint and, consequently, samples used for adaptation are not
part of the test. This approach assumes that the biometric system can stay a period only
adapting the biometric references (without performing test/recognition). Later, the adapted
biometric reference is fixed to perform recognition only. Some recent studies have also
adopted the separate sets approach [Biggio et al., 2012, Poh et al., 2014]. However, this
approach may not be the best choice in some cases since it does not make an optimal usage
of the available data. This is due to the non-overlapped adaptation and test sets. The optimal
usage of the dataset is a critical issue in the area, particularly in view of the limited amount
of large datasets for studying adaptive biometric systems.

The joint sets for test and adaptation approach, on the other hand, share data for test
and adaptation, so both sets are not disjoint. This approach also better represents a practical
scenario, where the system, once deployed, has to perform the recognition of all query
samples and use this data for adaptation. Hence, the system does not stop the recognition for
a period of adaptation.

An important work in the area which proposed an evaluation methodology following the
joint sets approach is [Rattani et al., 2013c]. A similar methodology was used in another
work from the same authors in [Rattani et al., 2013a]. Their methodology was based on
the DIEE dataset, which has several sessions per user, each containing 10 samples. The
following steps are performed:

• Part A (enrollment): the first 2 samples of the first session (t = 1) are used for
enrollment.

• Part B (adaptation): for each user, an adaptation set A is formed by the samples
from current session t plus five random impostor samples. The first session used for
adaptation is t = 1, however, in this particular case, the first two samples are discarded
since they were already used for enrollment, while, in the other sessions, all 10 samples
are part of the adaptation set. This adaptation set is then presented to the adaptation
strategy to perform adaptation.
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• Part C (test): the adapted biometric reference is used to test on the next session. The
first test session is t + 1. Biometric samples from the same session from all other users
are regarded as impostors to compute the performance metrics. Note that the biometric
reference is not adapted during the test. When the test is finished on session t + 1, Part
B is launched again, though on session t + 1 this time. The adapted biometric reference
is then tested on session t + 2 and so on.

Note that in this methodology, the last session is used only for test and the very first
session is only part of the enrollment and adaptation. However, all other sessions are used for
both adaptation and test, meaning that it mainly adopts the joint sets for test and adaptation
approach. As a result, the amount of samples used for both adaptation and test is increased.

Another evaluation methodology that follows the joint sets approach is [Giot et al., 2012c]
and its modification to include variable impostor ratios too [Giot et al., 2013]. As described
earlier in this chapter, a pool is generated for each session. The pools are used for test
and adaptation, so the same data is used by both processes. The work from [Pisani et al.,
2015a, Pisani et al., 2016] also adopted this approach as the same biometric data stream used
for test is also the input for the adaptation process.

III.3.6.6 Online vs Offline adaptation

As discussed in Section III.3, the periodicity of adaptation can change. There are two
general categories: offline and online adaptation. In the offline adaptation, the biometric
reference keeps unchanged for some time, then it is adapted at specific periods. Conversely,
in the online adaptation, the biometric reference is adapted after each query is presented to
the biometric system.

The methodology from [Rattani et al., 2013c] described earlier in this chapter is an
example of offline adaptation, since the biometric reference keeps unchanged during the test,
while the methodology adopted in [Giot et al., 2013] deals with online adaptation. The pool
is presented query by query to the biometric system, which performs recognition and then
adapt the biometric reference.

III.3.6.7 Chronological order

Usually, the evaluation of adaptive biometric systems respects the chronological order of
the biometric samples. In order to properly evaluate how the biometric system adapts the
biometric reference to changes over time, the enrollment should be done using the oldest
samples and the test using the newest samples, in chronological order. As a result, the
biometric reference is adapted to progressive changes observed over time. Modifying the
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order of the samples during the test can change how the biometric reference is adapted and,
therefore, if the goal is to study changes due to time, the obtained results would be unreliable.

In [Giot et al., 2013], for instance, the samples from the pool are randomly interleaved
(between genuine and impostors samples), but the chronological order of the genuine samples
is maintained. Another work that respects the chronological order is [Mhenni et al., 2016],
but is not the case for all studies in the area, such as [Biggio et al., 2012], which studied the
effect of poisoning attacks. In that study, random samples were used for enrollment, so test
samples may be older than the enrollment ones. Note that is does not mean the methodology
adopted by [Biggio et al., 2012] is wrong, as their purpose was not to evaluate adaptation to
genuine samples, but, instead, study poisoning attacks.

III.3.6.8 Division into sessions and biometric data streams

As discussed in the previous section, several evaluation methodologies used the division
into sessions to guide the assessment of the biometric systems. In [Rattani et al., 2013c,
Rattani et al., 2013a], for example, the session division information is used to guide when
the adaptation process is launched. In other studies, such as [Giot et al., 2012c, Giot et al.,
2013], the session division information is used to guide the generation of the pools, as one
pool is obtained from each session. The decision threshold also may change over sessions
since the results are reported in terms of EER.

Such a kind of information regarding the session division may not be available in a
practical scenario. In light of this fact, in the studies in [Pisani et al., 2015a, Pisani et al.,
2016, Pisani et al., 2017] which used the user cross-validation for biometric data streams
methodology, a biometric data stream is generated for each user ignoring the session division.
It works by joining all the sessions into a single one, then the first samples are used for
enrollment (where parameter tuning is performed too) and the remaining samples are used to
form a biometric data stream. This biometric data stream is a sequence of queries presented,
sample by sample, to the biometric system, which will return the labelp for each query. The
decision to adapt or not the biometric reference in the meantime is up to the adaptation
strategy. As a result, the decision to adapt a biometric sample is taken by the adaptive
biometric system without the help of additional information, such as the session division.

III.4 Conclusion

The aim of this chapter has been to provide a wide review of adaptive biometric systems,
covering aspects such as formalization, terminology, sources or variations that motivates the
use of adaptation, adaptation strategies, evaluation methodology and open challenges. To the
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best of our knowledge, this is most up-to-date and complete review of adaptive biometric
systems.

Thanks to the developed taxonomy for adaptation strategies presented in this chapter, the
reader is able to have a broad view of works in adaptive biometric systems and easily compare
them. Adaptation strategies were divided into components, namely: reference modeling,
adaptation criterion, adaptation mode, adaptation periodicity and adaptation mechanism.

Another contribution of this chapter is discussing the distinct evaluation methodologies
that have been adopted in previous work. The way to evaluate an adaptive biometric system
differs on the way to evaluate standard biometric authentication systems. Common evaluation
metrics have been redefined to be properly expressed in the context of adaptive systems and
specific metrics have been presented as well.

Regarding this detailed state of the art, we will present the proposed contributions in
order to remedy the reported problems.
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IV.1 Introduction

Cyber-attacks have spread all over the world to steal information such as trade secrets,
intellectual property and banking data. Facing the danger of the insecurity of saved data
(personal, professional, official, etc), keystroke dynamics was proposed as an interesting, non-
intrusive, inexpensive, permanent and weakly constrained solution for users. Based on the
typing rhythm of users, it improves logical access security. Nevertheless, it was demonstrated
that such an authentication mechanism would need a larger number of samples to enroll the
typing characteristics of users. Moreover, these registered characteristics generally undergo
aging effects after a time span. Different solutions have been suggested to remedy these
variability problems, including template adaptation. In this chapter, we propose a double
serial adaptation strategy that considers a single-capture-based enrollment process. When
using the authentication system, the template of users and the decision/adaptation thresholds
are updated. Experimental results on three public keystroke dynamics datasets show the
benefits of the proposed method.

IV.2 Target objectives

In the literature, most studies have required more than twenty captures to create the
reference template during the enrollment phase [Giot et al., 2011b], as depicted in Table IV.1.
However, considering usability, it is not really operational to ask users to type their password
20 times.

Table IV.1 – Gallery size in enrollment phase for some systems in literature

Works Gallery size in the enrollment phase
[Çeker & Upadhyaya, 2017] 20-40-60-80-100-120-140-160

[Ceker & Upadhyaya, 2016] 15

[Pisani et al., 2016] 40

[Yu & Cho, 2004] 50

[Obaidat & Sadoun, 1997] 112

[Killourhy et al., 2009] 200

In fact, it has been demonstrated that performances increase with the number of enrolled
samples in the template. In contrast, another study [Giot et al., 2011b] used only five samples



76 Chapter IV. Single Enrollment for Keystroke Dynamics with Adaptive Template Update

per user. The authors considered that "5" is the maximal number of samples for usability
reasons in industrial conditions. Indeed, even if the keystroke dynamics modality has proved
its efficiency in several scientific research papers, it is still not fully adopted in industrialized
applications, unlike other morphological modalities such as the fingerprint (e.g., fingerprint
scanner [Fernandez-Saavedra et al., 2016], Touch ID [Marasco & Ross, 2015], etc.) and the
face (e.g., video cameras on consumer devices [Smith et al., 2015], etc.). This is basically
owing to the need of several typing captures during the enrollment phase to create the
reference template that describes the typing rhythm of the users. It is not the case for real
applications for which the password is usually requested only once, when creating an account.
As shown in Table IV.1, for all the published research papers, the learning phase requires a
large number of samples which generally exceeds 20 according to [Giot et al., 2011b].

Besides, the problem of the tedious enrollment phase, keystroke dynamics particularly
suffers from large intra-class variation, as well as other behavioral modalities. Thus the need
of a specific adaptive strategy. First of all, it serves to enrich the typing manner description
by increasing the size of the reference. Second of all, it solves the problem of intra-class
variation.

IV.3 Proposed adaptive strategy

We put forward a novel adaptive method that considers a limited number of samples used
to create a user’s reference while keeping a good performance. Indeed, the user introduces
the password only once, when creating a new account. Thus, the reference is composed of a
single sample. Afterwards, for each successful authentication, the reference is updated in
a transparent way. Avoiding the enrollment phase, the growing window mechanism serves
to increase the size of the reference to capture more intra-class variations. Once the size of
the reference reaches 10 samples, the sliding window will be considered in order to limit the
number of samples saved in the reference. Moreover, the process detailed in Figure IV.1,
contains different contributions as follows :

• We consider a preprocessing step which intends to eliminate the noise in the captured
characteristics (peaks corresponding to hesitation, disturbances or workload of the
computer).

• We use a single sample to create a user’s reference while avoiding the tedious step of
typing the same password several times in the enrollment phase.

• We use a GA-KNN verification method: It is based on the optimized combination of
multi-distance metrics for the KNN classifier, which shows a better performance. This
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combination is ensured by vote parameters that are optimized by GA and updated
during the use of the system.

• We propose to adapt the reference and the used thresholds over time. Hence, our
method also considers the decision of the adapted thresholds criterion (user and
time-dependent).

• We resort to a double serial mechanism: This progressive adaptation mechanism
combines the growing-window and sliding-window mechanisms (respectively before
and after reaching the number of required samples, empirically set at 10).

Thus, a new authentication framework is proposed in addition to the adaptation strategy.
Indeed, previous works use baseline authentication method to evaluate their update system.
Now, we detail our contributions in each step of the process.

IV.3.1 Preprocessing phase

To describe the keystroke dynamics of one user, we are interested in temporal information
extracted from digraph transition times:

• PP: time difference between the press events of two successive keys ;

• RR: latency between the release events of two successive keys;

• PR: time duration between a one-key press event and its following key release event;

• RP: time duration between a one-key release event and its following key press event.

Hence, the characteristic vector C is composed of these temporal informations C =
[PP PR RR RP]. These characteristics undergo preprocessing steps, as demonstrated in
Figure IV.2. We first apply an aberration correction to the acquired characteristics aiming
to detect the peaks where the user takes an abnormally longer time to type a password. In
fact, these peaks do not describe a user’s typing manner. They are generally caused by
a disturbance, hesitation time, etc. For that purpose, we first define the peaks as the ith

characteristic value C(i) three times greater than the ith value of the standard deviation vector
of the reference σC(i). The peak is then replaced by the ith value of the mean vector µC of
the reference. This correction is applied to two peaks of the characteristic vector at most.
Equation IV.1 summarizes this preprocessing step, in case it is applied to the characteristic
vector C.
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 IF (C(i) ≥ ( 3 × σC(i))) T HEN

C(i) = µC(i)
(IV.1)

where:
i is the index of the ith character of a vector ;
C is the characteristic vector of each keystroke dynamics acquisition presented to the prepro-
cessing phase;
σC is the standard deviation vector of the reference. When the reference contains an only
one sample, σC is a vector of fixed values (which are the standard deviation value of the one
sample reference);
µC is the mean vector of the reference.

After that, data normalization is carried out by dividing the characteristic vector by the
standard deviation σ of the reference (to ensure a standard deviation of these features to 1),
as depicted in Equation (IV.2). In fact, the normalization is applied to reduce the order of
the magnitude of latencies from 106-order to 100-order values. Thus, the allocated memory
space is reduced as well as the execution time.

This normalization is applied when the gallery contains at least two samples. Actually,
when the reference contains only one sample, it is divided by the standard deviation which
is a value and not a vector. So, all elements of the reference vector are divided by the same
value. Whereas when the size of the reference is larger than 1, each element of the reference
is divided by the corresponding element of the standard deviation vector.

C(i) =
C(i)
σC(i)

(IV.2)

By applying the aberration correction and normalization steps, the erroneous data are
almost removed. Thus, we obtain a sample composed of four characteristic vectors containing
the information necessary to model the users’ keystroke dynamics.

IV.3.2 Enrollment phase

Several biometric authentication systems, essentially those based on face and fingerprint
modalities [Ryu et al., 2006, Rattani et al., 2007], use a single sample in the enrollment step.
This is not the case for keystroke dynamics systems, since they are based on a behavioral
modality that quickly changes over time.
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According to the literature, the minimal number of samples used during the enrollment
phase to create the reference is 5 samples [Giot et al., 2011b]. In this contribution, we
use characteristics extracted from only a single sample to create gallery G j of user j, in
the enrollment phase. Therefore, the proposed method fits the industrial and operational
application conditions, for which a user introduces a password only once when creating an
account.

Indeed, the number of samples the user must type during the enrollment phase is a
constraint that can penalize the authentication system. Most papers from the literature
mentioned in this work required at least 5 samples to build the reference template. This is not
operational. Indeed, users will be quickly annoyed. Therefore, we have chosen to consider
a single sample, to alleviate the enrollment phase while keeping satisfying performances,
especially when the purpose is the security of an industrial application. Using a single sample
during the enrollment phase:

• is easier to achieve;

• ensures a lower computation time;

• fits the industrial application conditions;

• meets usability requirements.

IV.3.3 Verification phase

This phase aims to decide whether to authorize or deny an access for a claimed user. We
judge the K Nearest Neighbor (KNN) approach to be the most appropriate classifier as it has
proved to be efficient for keystroke dynamics modalities [Akhtar et al., 2014, Pisani et al.,
2016], hence the competitive performances. Indeed, a single sample in the reference will not
be efficient for the training phase of the other classifiers like NN or SVM. Since the KNN
classifier can be applied with a variety of distances, several distance metrics are tested.

IV.3.3.1 Distance metrics analysis

The classification is ensured with a KNN classifier. Knowing that the KNN classifier
can be used with different distance metrics, we propose to evaluate its performances with
different metrics for the purpose of choosing the best ones.

Choice of distances :
The process of the suggested method is detailed in Figure IV.3. It is the same general

process but without the calculation of the weighted vote combining the scores obtained by the



82 Chapter IV. Single Enrollment for Keystroke Dynamics with Adaptive Template Update

chosen distances. This process is used to choose the distances that offer the best performance
among those tested.

Enrollment

New query

Save sample

KNN  
classifier

Nearest 
neighbor score 

Classification 
decision

Verification

Adaptation 
decision

Reference 
size

sliding window

Growing window

Yes

Adaptation

Yes

< 10

= 10

First adapted
threshold

Second adapted
threshold

Refused query

No

Authenticated query 
without adaptation

No

First typing 
sample Reference

Figure IV.3 – Description of the keystroke authentication process

Regarding the obtained results, presented in the following, four main distance demon-
strated better perfromances than the other tested ones: The Statistical [Hocquet et al.,
2007], Hamming , Euclidean and Manhattan distances are considered to obtain four re-
spective partial scores DS T AT , DHAMMING, DEUCLIDIAN and DMANHATT AN , as represented in
Equation (IV.3). Thereby, each novel query is labeled by the KNN classifier using these four
distances described below:

• Statistical distance: It is widely used for classifying keystroke dynamics data. Based on
extracting statistical values from each biometric feature (mean and standard deviation),
it has the advantage of being easy to calculate and offering competitive performances.
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This distance is well known for its competitive performances and its calculation speed
while being used for the keystroke dynamics authentication [Hocquet et al., 2007].

• Hamming distance: It consists in calculating the percentage of different coordinates
between the novel query and the reference samples.

• Euclidean distance: It is a simple distance metric often used with a KNN classifier. It
is defined as the square root of the sum of the squares of the differences between the
corresponding coordinates of the new query and the reference samples.

• Manhattan distance: It computes the sum of the differences of the corresponding
components of the new query and the reference samples.

DS T AT = 1 −
1
n

n∑
i=1

e−
| qi − µi |
σi

DHAMMING = ( # ( q j , G j(i) ) / n )

DEUCLIDIAN =

√√
n∑

i=1

( q j − G j(i) )2

DMANHATT AN =

n∑
i=1

| q j − G j(i) |

(IV.3)

where:
q j is the claimed query of the user j, G j(k) is the kth reference sample of the user j, m is the
number of the samples in the reference G j, µ is the mean vector of the reference, and σ is
the standard deviation vector of the user reference, and i varying from 1 to n where n is the
length of the password.

Distance assessment :
Although the reference initially contains only a single sample, the obtained results

are promising. Figure IV.4 depicts the DET curves with the associated EER and AUC
performances for the twelve adaptation sessions of the different experimentations applied to
the GREYC 2009 database. Figure IV.5 illustrates the ROC curves and the performances
(EER, AUC) of the first and the last adaptation sessions obtained using both databases.

We choose four distance metrics to associate to the KNN classifier because we test a large
number of distances, but those that demonstrate competitive performances are hamming,
statistical, euclidean and Manhattan. Other tested metrics, were much less efficient than those
considered as depicted in Table IV.2. Comparing the metrics with each other, we note that the
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(d) Hamming distance.

Figure IV.4 – DET curves evolving over all adaptation sessions (GREYC 2009 database) and the associated
performances (EER, AUC)

hamming distance and the statistical one perform better than others for the two considered
databases.

We compare our approach with that of Giot et al [Giot et al., 2011b], in which the authors
applied the average mechanism based on 3 different classifiers: Support Vector Machine
(SVM), neural network and statistical distance. Thereby, an examination of the classifiers’
performance is essential. Table IV.3 summarizes the compared results.

The best performance achieved in [Giot et al., 2011b] is an EER equal to 6.96%, while
using an SVM classifier and the reference was composed of 5 samples as minimum size
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Figure IV.5 – DET curves of the first and the last adaptation session (S1,S12) and the associated performances
(EER, AUC)

and 15 samples maximum. In the present study, we use the same database as in the work
of [Giot et al., 2011b], thus obtaining two better performances: an EER equal to 6.3% using
the KNN based on the statistical distance, and 6.1% using the KNN based on the hamming
distance. We will benefit from the minimisation of the size of the reference while keeping
better performances to facilitate the industrialisation of the keystroke dynamics modality.
In addition, the KNN classifier compared to other classifiers, has the advantage of a low
computing time which facilitates its deployment on the web server.
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Table IV.2 – Comparison of performances obtained by different distances.

Distance EER AUC
City block distance 0.108 0.045

Chebychev distance 0.214 0.144

Minkowski distance 0.163 0.079

Correlation: One minus the sample linear correlation between

observations (treated as sequences of values).
0.276 0.175

Jaccard: One minus the Jaccard coefficient, which is the percentage

of nonzero coordinates that differ.
0.128 0.053

Spearman: One minus the sample Spearman’s rank correlation

between observations (treated as sequences of values).
0.196 0.119

Table IV.3 – Comparison of the chosen classifier with those of previous work for GREYC 2009 database.

Adaptive Reference size
mechanism Minimum Maximum

Classifier EER AUC

Double 1 10 KNN (Hamming) 6.1% 0.013
serial 1 10 KNN (Statistical) 6.3% 0.017

mechanism 1 10 KNN (Euclidean) 7.8% 0.033
(Proposal) 1 10 KNN (Manhattan) 8.9% 0.031
Average 5 15 SVM 6.96% -

mechanism 5 15 Neural network 8.75% -
[Giot et al., 2011b] 5 15 Statistical 10.75% -

IV.3.3.2 GA-KNN combination

To enhance the performances obtained by each metric distance apart, the KNN classifier
is used with a multi-distance vote strategy assured by a Genetic Algorithm.

In Equation (IV.3), q j is the query that claims to belong to user j. Hence, it is matched
against its biometric reference G j. We use these four metrics because we have tested different
distance metrics separately, and these ones have demonstrated better performances. The
global score S core j is the weighted sum of the four partial scores. For each user j, we
calculate the global score according to Equation (IV.4):
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S core j = α × DS T AT + β × DHAMMING

+ γ × DEUCLIDIAN + δ × DMANHATT AN
(IV.4)

where α, β, γ, δ are the vote parameters. The calculation of these parameters will be
further detailed in the "adaptation mechanism" point in the next section IV.3.4.

The calculated score is compared to a previously set verification threshold. As a result, it
is very critical to define the appropriate threshold. Two types of thresholds have been defined
in the literature:

• Global threshold: During the use of the system, a constant and unique threshold is
fixed for all users.

• Individual thresholds: During the use of the system, user-specific thresholds are
considered.

In [Giot et al., 2011b], the authors compared these two types of thresholds for the
keystroke dynamics modality and showed that the best performances were obtained with the
individual threshold. Thereby, we opt for this type of threshold in our experiments. In the
next section, we show how to make both thresholds (decision and adaptation) time-dependent.

IV.3.4 Adaptation phase

This subsection presents an innovative adaptation method. It essentially updates both
decision and adaption thresholds.

IV.3.4.1 Thresholds adaptation

For the proposed method, we use the double threshold criterion to make the adaptation
decision [Rattani, 2010]. Two thresholds are used to make two successive decisions. The
global score Score j is compared to a first threshold (decision one) to verify a user’s identity.
After acceptance, the same score is again compared to a second threshold to decide whether
to use the query for adaptation. This adaptation criterion has been deeply used for adaptive
systems concerning different modalities (face and fingerprint [Rattani, 2010], as well as
keystroke dynamics [Giot et al., 2012c]).

The choice of the update threshold is very important. Actually, a strict threshold does not
capture intra-class variability. On the other hand, a very high threshold raises the possibility
of including imposter information to the gallery. In the literature, the decision threshold is



88 Chapter IV. Single Enrollment for Keystroke Dynamics with Adaptive Template Update

chosen using one of the following approaches: opting for the same threshold for all users; or
utilizing a specified threshold for each user [Drygajlo et al., 2009]. It can be empirically or
automatically defined, depending on the security level to reach.

It is known that the measured system’s performance is different depending on the targeted
choice [Hocquet et al., 2006] [Hosseinzadeh & Krishnan, 2008]. Moreover, it has been
demonstrated that the individual threshold approach is more advantageous in terms of
calculated error percentage [Giot, 2012]. Some studies [Drygajlo et al., 2009, Rattani
et al., 2011] have analyzed the influence of age progression on the classifier thresholds and
have proved that there is a conditional dependency between age progression and classifier
scores. Thus these works have adapted the used thresholds and obtained better performances,
but threshold adaptation has been mainly utilized for the face modality. These studies
demonstrated that the variation in the users’ characteristics over time would influence the
scores obtained by the classifiers. Consequently, it is better to update the thresholds in order
to cope with these variations.

In this work, we propose to adapt both thresholds and we demonstrated in [Mhenni
et al., 2016] that updating the used thresholds would improve the system performance.
An individual decision threshold T i+1

j of session (i + 1) is adapted by decreasing it with a
coefficient depending on the average of the mean vector of reference µ and the standard
deviation of the standard deviation vector σ, as indicated in Equation (V.3). The initial
thresholds are fixed to EER ≃ 3% (the best performance we have obtained).

T i+1
j = T i

j − e−
µ j
σ j (IV.5)

Thereby, the thresholds are specific to the user and to the session at the same time.

Highlighting of the adapted thresholds:
To highlight the advantages of the adaptation of the used thresholds we compared it to

the other thresholds: global and individual. Thus, we applied the experimentation whose
parameters are summarized in the table IV.4.

We firstly present the results obtained by applying this approach on the GREYC 2009
database. Figure IV.6 represents results validated with fixed, individual and variable thresh-
olds. The basic scenario without any template update is "None". The scenarios using a
template update strategy are "Sliding" and "Growing".
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Table IV.4 – Experiment parameters to highlight the adapted thresholds

Parameter Value
Modality Keystroke dynamics
Authentication method Statistical classifier
Update decision Double threshold
Update mode Semi-supervised
Update periodicity Delayed
Update strategy None, sliding window,

growing window
Number of sessions 5 sessions
Respect to chronology Yes
Enrollment samples 10 user’s samples
Verification samples 10 user’s samples,

10 impostor’s samples
Evaluation metrics EER , ROC

The same process is repeated to the same database, but with a growing window update
strategy. Figure IV.7 illustrates the results we obtained. For the Web-GREYC database, we
show the results in Figure IV.8.

Experimentally, taking into consideration the intra-class variation, the characteristics
of the users change over time. Thus, by decreasing the threshold, we only pick the most
similar characteristics to the reference. However, we do not suddenly reduce the threshold.
Instead, we start with a high threshold (but which differentiates between samples of authentic
user and those of impostors) in the first update session. Consequently, we introduce into the
reference some new users’ samples that are different. From one session to another we slightly
decrease the threshold so that we can capture less dissimilarity. Finally, samples similar to
the modified reference (containing new samples added in last sessions) are captured. This is
explained by the fact that by mastering the password, there is a noticeable stability in the
typing manner.

Varying the update thresholds from one session to another allows reducing the update
error rates, so the performance gets better over time in comparison to using a fixed or
individual threshold. The method has been validated on a template update system for
keystroke dynamics on two datasets. We have shown that our approach (based on sliding or
growing windows) gives a better performance than the classical ones (EER 2% lower).
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(b) Individual thresholds.
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Figure IV.6 – Performances of sliding window update method applied on GREYC 2009 database.

IV.3.4.2 Template adaptation

The main contributions of the proposed template adaptation method are:
1) It is initialized with a single sample as a reference
2) A multi-distance classifier is considered with adaptive weights.
In fact, we propose a contribution in each of the five components of the template update
approach, as depicted in Algorithm 8.

• Reference modeling: By initiating the authentication process, users are supposed
to type their passwords only once for the computation of the reference template.
Afterwards, they can test their identity verification. The main idea is to limit the
enrollment phase to a strict minimum and to allow an adaptation of the biometric
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Figure IV.7 – Performances of growing window update with different thresholds tested on GREYC 2009
database
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Figure IV.8 – Performances of growing and sliding window updates with different thresholds tested on
Web-GREYC database

reference to fit its aging over time. Indeed, it is always mentioned that the enrollment
phase annoys users [Giot et al., 2011b]. Even if the proposed scheme does not
capture any variability during the enrollment stage, the combination with the proposed
adaptation strategy will allow users to cope with it.
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• Adaptation criterion: Different adaptation criteria have been used in the literature
to initiate the adaptation process. Based on the double threshold mechanism, we put
forward our new adaptation criterion called "adapted thresholds". As demonstrated in
section IV.3.4.1, it uses individual thresholds that are decreased over time according
to Equation (V.3). In fact, after using the password for a long period, the intra-class
variation in the user’s keystroke dynamics becomes lower. This is due to the acquisition
of a habit after frequent uses. Therefore, we slightly reduce the threshold during the
use of the system.

• Adaptation mode: Adaptation is dealt with in a semi-supervised mode through the
application of the "GA-KNN verification method". Each query is labeled with the KNN
classifier. It will be accepted (i.e. classified as genuine) if the value of the global
score S core j, calculated according to Equation (IV.4), is lower than the "adapted
threshold". Equation (IV.4) permits calculating the weighted sum of the four partial
scores (DS T AT , DHAMMING, DEUCLIDIAN , DMANHATT AN) which are the nearest neighbor
scores obtained by the KNN classification with four different distance metrics, defined
by Equation (IV.3). The weight parameters (α, β, γ, δ) are calculated thanks to GA.
Algorithm 8 details the process.

GA is inspired by the natural evolution process following the Darwinian model. It uses
a fitness function to optimize the weight parameters ( α, β, γ, δ ) during a number of
iterations (or generations). The content of the initial population is randomly generated.
For our experimentations, the optimization function of GA minimizes the FNMR and
the FMR by optimizing the Half-Total Error Rate (HTER). The computation of the
FNMR and FMR values is based on the presented queries for each adaptation session
which are labeled thanks to the GA-KNN. The adopted parameters of the GA algorithm
are summarized in Table IV.5.

Table IV.5 – GA Parameters

Parameter Value
Population size 50 (number of variables 6 5)
Crossover fraction 0.8
Generation 400 (100*number of variables)
Elite count 2.5 (0.05 * population size)
Selection function Stochastic uniform
Crossover function Crossover scattered
Mutation function Gaussian
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We periodically vary the classification parameters ( α, β, γ, δ ) of Equation (IV.4) to
ensure a better performance. Consequently, at the end of each adaptation session, the
GA recalculates new global weights for all the users to optimize them. In each session,
the fitness of all users is evaluated and is usually the value of the defined optimization
function.

The great advantage of GA is that it succeeds in finding optimal solutions for very
complex problems, so as to take advantage of certain known properties. Furthermore,
they are used in applications where a large number of parameters are involved and
where it is necessary to obtain good solutions in only few iterations in real-time systems,
like in the suggested approach.

• Adaptation periodicity: The proposed adaptation strategy operates online. Each
accepted query that satisfies the adaptation criterion is included in the adaptation
mechanism.

• Adaptation mechanism: The initial reference is composed of only a single keystroke
dynamics sample. Therefore, the suggested process enriches the reference describing
the user’s typing manner as shown in Figure IV.9. At the beginning, the growing
window mechanism is adopted. As a result, each request accepted by the adaptation
criterion is added to the gallery samples. Once the maximal size of the users’ gallery
(set to 10 samples in our work) is reached, the sliding window mechanism will be
applied. Thereby, the oldest sample in the reference gallery will be replaced by a new
query. Hence, the process is a "double serial mechanism".

We noticed that the "double serial mechanism" allows us to obtain a satisfying model
of the users’ typing rhythm evolution over time. In fact, the novelty is to combine the two
considered adaptation mechanisms by applying them sequentially to the same reference.
At first, the growing window mechanism is useful for increasing the number of samples
representing the users’ reference. The purpose of this phase is to enrich the description of the
users’ typing manner. After that, we update the reference to take into account the intra-class
variations over time. Indeed, the sliding window mechanism starts when the size of the
reference reaches 10 samples in order to keep a minimal size of the reference (no waste in
calculation time). Moreover, this adaptation mechanism is based on the principle that the
oldest samples are the least representative of the actual keystroke dynamics of the user. As
demonstrated in Algorithm 7, the newest samples are added while the oldest ones are deleted.
In the next section, we demonstrate the efficiency of the proposed method.
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Algorithm 7: Proposed template update strategy for user j during an adaptation session.
Require:

re f j(t), q
s
j,maxS ize(re f j(t)),N ← maxS ize(re f j(t)), (α0, β0, γ0, δ0) = EmpiricalValues

Ensure: re f j(t+1)

for j = 1 : NumberOfUsers do
for e = 1 : 8 do

DS T AT ← KNNS tatistical(re f j(t), q
e
j,K = 1)

DHAMMING ← KNNHamming(re f j(t), q
e
j,K = 1)

DEUCLIDIAN ← KNNEuclidean(re f j(t), q
e
j,K = 1)

DMANHATT AN ← KNNManhattan(re f j(t), q
e
j,K = 1)

S core j = αs ×DS T AT + βs ×DHAMMING + γs ×DEUCLIDIAN + δs × DMANHATT AN

if ( S core j < adaptatedThreshold ) then
if ( size(re f j(t)) < N ) then

re f j(t+1) ← GrowingWindow(re f j(t), q
e
j)

else
re f j(t+1) ← S lidingWindow(re f j(t), q

e
j)

end if
end if

end
end
αs+1, βs+1, γs+1, δs+1 ← GeneticAlgorithm((αs, βs, γs, δs); (DS T AT ,DHAMMING,
DEUCLIDIAN ,DMANHATT AN))

111

Impostor 
SampleInitial reference

Growing window phase Sliding window phase 

10

1 4

3
2

5

6 7

8 9

Figure IV.9 – User’s gallery representation over time: The effects of the double serial mechanism on the gallery.
Each circle represents the gallery samples in a specific session.
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IV.4 Experiments

In this section, we put forward the processing description. Moreover, we present the
evolution of some parameters of the experiments like the reference gallery size and the
weight parameters over the adaptation sessions. We also detail the obtained results for each
adaptation session.

IV.4.1 Data stream generation

To evaluate the performance of the proposed system and to follow its evolution, we
divided the adaptation process into different sessions. For each session, we introduced eight
new queries to the system. These data were divided into five genuine samples and three
impostor ones for each adaptation session. First, 5 genuine queries are presented to the
authentication process.They were presented according to the chronological order of the
database safeguard. Subsequently, the three imposter queries were randomly introduced.

The biometric data stream was then divided into 37.5% (3/8) of impostor samples and
62.5% (5/8) of genuine samples. The attack rate was higher than that generally used in
keystroke dynamics studies [Giot et al., 2012c, Pisani et al., 2016] (70% for genuine samples
and 30% for impostor ones).

For both GREYC-2009 and GREYC-WEB databases, we have 60 samples for each user.
These samples were divided into 12 sessions (5 genuine samples/session). As we used the
first sample as initial reference, we presented in the last session only four genuine samples.
The impostor attacks were randomly generated by the samples of other users of the database.
For the CMU database, 400 samples per user are available. The system operates for 80
sessions.

IV.4.2 Classification parameters

In this work, we opted for a KNN classifier based on multi-distances. Thus, to set the
values of the vote parameters ( αs, βs, γs, δs ) of Equation (IV.4), we used GA. It is a
widespread algorithm that provides high-quality solutions for optimization problems. Its
advantage is that it can start from a collection of randomly generated data. This is quite
similar to our experimentation conditions, where the initial reference is not random, but it
does not represent well the users (using only the first sample).

The initial values of the vote parameters are empirically set. We opted for the values that
guarantee the best performances for the first adaptation session. At the end of each session,
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Table IV.6 – Classification parameters obtained with GA during 12 sessions for GREYC 2009 database

Parameters
Adaptation Sessions

α β γ δ

1 0.0381 0.6295 0.3327 -0.0002
2 0.0289 0.5662 0.3143 0.0906
3 0.0183 0.6298 0.2562 0.0958
4 0.0560 0.6437 0.2854 0.0149
5 0.0404 0.6534 0.2867 0.0196
6 0.0482 0.6024 0.3172 0.0322
7 0.0506 0.6924 0.1904 0.0667
8 0.0327 0.6581 0.2582 0.0511
9 0.0616 0.6684 0.2475 0.0225

10 -0.0593 0.6681 0.3743 0.0170
11 0.0374 0.6936 0.2732 - 0.0042
12 0.0468 0.6411 0.2460 0.0661

Table IV.7 – Classification parameters obtained with GA during 12 sessions for GREYC-WEB database

Parameters
Adaptation sessions

α β γ δ

1 0.1611 0.4291 0.4201 -0.0103
2 0.1127 0.4612 0.3666 0.0595
3 0.1424 0.4427 0.3603 0.0546
4 0.1694 0.4669 0.3963 -0.0326
5 0.1325 0.4219 0.3754 0.0702
6 0.1425 0.4333 0.3368 0.0874
7 0.1369 0.3822 0.4118 0.0691
8 0.1191 0.4675 0.3841 0.0293
9 0.1453 0.3993 0.3875 0.0679
10 0.1078 0.4995 0.4102 -0.0175
11 0.1114 0.4926 0.03203 0.0757
12 0.1239 0.4366 0.3851 0.0544

after the presentation of 8 new queries, we restart the GA to update the weight parameters.
These new parameters would guarantee minimal FNMR and FMR rates.
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This process was repeated for each adaptation session. Table IV.6 and Table IV.7 present
the weight values obtained at the end of each adaptation session for GREYC-2009 and
GREYC-WEB databases, respectively. We can notice that the Hamming and Euclidean
distances (βs and γs) have in general the highest vote values. In fact, these two distances
demonstrated also better performances than the others while testing each of them separately
with the KNN classifier [Mhenni et al., 2018b].

IV.4.3 Gallery size

As previously mentioned, the initial reference gallery contains only one sample of the
genuine user introduced during the enrollment phase. Throughout the adaptation strategy,
the reference size increases over time by adding each accepted query to the user’s reference.
Once the maximal size (ten samples) is reached, the reference size will remain stable.

Since the number of accepted queries is not the same for all users, the size of the reference
differs from one user to another at the end of the session. We followed this gallery size
variation during all adaptation sessions to separate between sessions belonging to the growing
window phase and those belonging to the sliding window one.

For a better illustration of the distribution of the database users according to their reference
size, we added the representation of the reference size variation in a table forms. As depicted
in Table IV.8, IV.9 and IV.10, the growing window phase operates over a limited number of
sessions. Its duration does not exceed three sessions for some users and 5 sessions for all
users. This implies that the number of false rejections is not high since the beginning. Our
experimentations demonstrate that despite the lack of samples in the initial reference, the
classifier can distinguish between novel queries. Few users have a reference size equal to 5
at the end of the first session (only 2 users for the GREYC-2009 database). For the following
sessions, the number of genuine accepted queries goes up quickly especially for the CMU
database as illustrated in Figure IV.10.

Table IV.8 – Size of references in the beginning of each adaptation session for GREYC 2009

Reference size 1 2 3 4 5 6 7 8 9 10
Session 1 100% - - - - - - - - -
Session 2 - 22% 43% 33% 2% - - - - -
Session 3 - - - 2% 5% 18% 25% 30% 14% 6%
Session 4 - - - - - - 1% 2% 5% 92%
Session 5-10 - - - - - - - - - 100%
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Figure IV.10 – Size variation of the users’ references size during all adaptation sessions
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Table IV.9 – Size of references in the beginning of each adaptation session for GREYC-WEB

Reference size 1 2 3 4 5 6 7 8 9 10
Session 1 100% - - - - - - - - -
Session 2 - 20% 51.1% 28.9% - - - - - -
Session 3 - - - - 4.5% 22.2% 33.3% 20% 6.7% 13.3%
Session 4 - - - - - 2.2% - - 4.4% 93.4%
Session 5-10 - - - - - - - - - 100%

Table IV.10 – Size of references in the beginning of each adaptation session for CMU

Reference size 1 2 3 4 5 6 7 8 9 10
Session 1 100% - - - - - - - - -
Session 2 - - 46% 54% - - - - - -
Session 3 - - - - - - 8% 40% 38% 14%
Session 4-80 - - - - - - - - - 100%

IV.5 Experimental results and discussion

In the experimental results, the following performance metrics were adopted: FNMR,
FMR, EER, AUC and the Accuracy. We chose these performance measures in order to
compare the obtained results with other studies in the literature.

Figure IV.11 depicts the EER and AUC values of each adaptation session for the three
considered databases. Concerning the CMU database, as the number of sessions is quite high
(80 sessions), we illustrate only the performances of every ten sessions. We can conclude
that the results are slightly improved in each session. The performance improvements during
the sliding window phase are much clearer than those of the growing window one. These
performances are expected since the reference is not entirely defined at the beginning.

The final result of the last session illustrates a statistically significant improvement. The
obtained performances (EER, AUC) in the last session are much improved compared to those
of the first one, as shown in Figure IV.11.

As the proposed method is processing online, we are interested in the computation time
of each phase. Table IV.11 presents the computation time of each phase for a single user and
for all considered users of the GREYC 2009 database. Concerning the computation time of a
unique user, the average computation time is considered. Timing is calculated on CPU with
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Figure IV.11 – DET curves and associated performance results (EER, AUC) for all adaptation sessions.
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an Intel i7 processor with a speed of 2.5 GHz and 8-Gb RAM. The adaptation phase is faster
than the other steps of the process. All phases have a fast computing time except GA which
operates in an offline way, so it does not affect the operating time of the proposed approach.

Table IV.11 – Computation time in seconds involved in each phase of process for only one user and for all users

Phase One user All users

Feature extraction 0.035 4.53

Pre-processing: aberration 0.012 0.98

Pre-processing: normalization 0.000015 0.0016

Enrollment 0.00009 0.0015

Verification: Statistical 0,006 0,63

Verification: Hamming 0.002 0.187

Verification: Euclidean 0.0015 0.158

Verification: Manhattan 0,0017 0,176

Genetic algorithm - 18.93

Adaptation 3.2395e-05 0.0012

The overall results of FMR, FNMR and accuracy concerning the three considered
databases are shown in Table IV.12. These results are calculated over all adaptation sessions
while considering the whole data of the databases. The best achieved results are those ob-
tained with the GREYC-2009 database. While considering the EER and AUC performances,
the CMU database presents the best obtained results.

Table IV.12 – Overall performances for three considered databases

GREYC-2009 GREYC-WEB CMU
FMR 0.0833 0.1375 0.1406
FNMR 0.0463 0.0516 0.0647
Accuracy 0.828 0.810 0.794

Actually, we have considered two metrics to evaluate the proposed approach, EER and
AUC, since they have been commonly used. Compared to previous works using the same
evaluation metrics and applied to the same database, the proposed method performs better as
illustrated in Table IV.13. We have also compared our approach to the enhanced template
update [Pisani et al., 2016] applied to the same database, but the considered evaluation
metric was the accuracy. For that purpose, we calculated the accuracy corresponding to all
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adaptation sessions. Even if it is a bit low, the obtained accuracy is better than that of the
enhanced template update.
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Figure IV.12 – Accuracy during all adaptation sessions for the three considered databases.

In the beginning of the process, the obtained accuracy was a bit low. However, it improved
over time, and it was quite high in the final sessions. We represented, in Figure IV.12 the
accuracy variation during all adaptation sessions for the 3 considered databases.

We compared the proposed method to previous works in the literature. For GREYC-
2009 database, the proposed method was compared to the average mechanism [Giot et al.,
2011b], which was applied to a reference initially composed of a gallery with five samples
and not exceeding 15. For that, we investigated various threshold types: global, individual
and variable. Once again, the adaptation mechanism based on variable thresholds led to
better performances than when using the other types of thresholds. Table IV.13 shows the
comparison of the obtained results on the GREYC-2009 database.

We also compared the proposed method with some other work from the literature to
analyze the impact of the number of samples used in the reference gallery, especially in the
training phase (See Table IV.14). For the CMU database, the best obtained result by the
Enhanced template update in [Pisani et al., 2016] was 0.670 accuracy, although the reference
was obtained by 40 samples. For our experiments, the results achieved with the suggested
method were much better with a unique sample as an initial reference template as we obtained
0.794 accuracy.
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Table IV.13 – Comparison of obtained results with different thresholds for GREYC-2009 database

Double serial mechanism Average mechanism
Threshold

Reference size EER% Reference size EER %
Global 1-10 7.1 5-15 6.96
Individual 1-10 6.5 5-15 6.95
Variable 1-10 4.5 - -

Table IV.14 – Performance comparison of the different implemented mechanisms

Database Adaptation Mechanism Gallery size Threshold FNMR FMR Accuracy

CMU Double serial mechanism 1-10 Variable 0.064 0.140 0.794

CMU Enhanced template update 40 Global 0.088 0.573 0.670

WEB-GREYC Double serial mechanism 1-10 Variable 0.051 0.137 0.810

WEB-GREYC Enhanced template update 40 Global 0.042 0.355 0.802

The proposed method had the advantage of minimizing the computation time to create
the reference that was very important for the online adaptation mechanism. The experimental
results showed that the obtained performance (EER, FNMR) outperformed the other methods
in the state of the art for the same databases and under the same test protocol conditions.
Furthermore, the proposed method satisfied the suggested conditions in an industrial context.
Indeed, a single sample was necessary during the enrollment step. It was a great advantage
instead of asking users to type their password multiple times.

To illustrate the advantages of the proposed adaptation approach, we applied other
algorithms of the literature to the GREYC-WEB database. We firstly tested the growing
window mechanism with a reference containing a single sample initially. The size of the
reference increases up to 43 thanks to the adaptation mechanism. Secondly, we applied
the sliding window mechanism based on a 10-sized reference. Thirdly, we also tested the
proposed double serial mechanism while the reference was initialized to 5 samples and its
maximum size was fixed to 10. Finally, the double parallel mechanism was conducted using
two sub-references. One of them initially contained a single sample and it was adapted with
the growing window mechanism. The other one initially comprised 10 samples and it was
adapted with the sliding window mechanism. Figure IV.13 depicts the size variations for each
adaptation mechanism. All of these mechanisms were implemented by the GA-KNN method
based on the weighted vote of 4 distance metrics. The obtained results are summarized
in Figure IV.14.
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Figure IV.14 – DET curves of last adaptation sessions and associated performances (EER, AUC) of different
adaptation mechanisms applied to GREYC-WEB database

With a reference size approximately equal to the proposed approach, the double serial
mechanism was the best performing among the tested mechanisms. While increasing the
initial size of the reference by five samples, we obtained better performances. This was
due to the larger description of the keystroke dynamics of users. However, the performance
difference at the final session was not very large. Thus, we chose an approach based on a
single sample in the learning phase in order to familiarize it with the industrial application
environment.
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Figure IV.15 – DET curves and associated performance results (EER, AUC) for all adaptation sessions while
considering 2 majority votes.
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The best performances achieved was obtained by consiedring the vote of the 4 chosen
distance metrics. Indeed, we tested the proposed method on the three used databases
considering only the two majority votes. In fact, Beta and Gamma are the most significant
vote coefficients corresponding to Hamming and Euclidean distances respectively. The
obtained performances were not improved as depicted in Figure IV.15. For CMU database
for example, the best EER value obtained in the last adaptation session is equal to 0.05%
while considering only two distances whereas it is equal to 0.02% while considering the 4
chosen distances.

IV.6 Conclusion

Adaptive biometric strategies provide an important solution to remedy the intrinsic intra-
class variations in behavioral biometric authentication systems. As the keystroke dynamics
is a biometric modality that suffers from continuous variations over time, adaptive methods
are a good solution to compensate for this trouble. Most of the existing studies have used a
huge number of samples to create the reference describing the users’ typing rhythm in the
enrollment phase.

This chapter has investigated a solution that enables modeling an individual’s keystroke
dynamics while minimizing the used samples for the definition of the reference template.
For this purpose, we proposed a single enrollment process (the password was typed only
once during the enrollment step). The size of each user gallery would increase while using
the system, to reach a maximum size equal to 10 thanks to the double serial mechanism.
Actually, the growing window first serves to enlarge the users’ galleries so as to capture
more intra-class variability. When the maximum size of the reference is attained, the sliding
window will take place and allow following the temporal variation in the users’ keystroke
dynamics. The proposed contribution is an interesting solution as it satisfies industrial needs
(usable enrollment and good efficiency).

We also evolved a GA-KNN verification method to achieve better performances during
the whole adaptation session. Indeed, the weights from different distances for the KNN
classifier, in addition to the GA optimization, are useful to minimize recognition errors. With
regards to previous work, the suggested method shows a great performance improvement.
As it has been applied on several databases, it has demonstrated competitive performances in
each database.

To improve the performances of the proposed method, we decided to put forward an
adaptive strategy to each category of users according to their specificities. In fact, we noticed
that user’s behaviors over time are quite different and can be divided into groups. Thus, we
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considered "Doddington zoo" to classify them and to apply an adaptive strategy appropriate
to each users’ class.
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V.1 Introduction

Regarding the fact that individuals have different interactions with biometric authenti-
cation systems, several techniques have been developed in the literature to model different
users categories. Doddington Zoo is a concept of categorizing users behaviors into animal
groups to reflect their characteristics with respect to biometric systems. This concept was
developed for different biometric modalities including keystroke dynamics. The present
study extends this biometric classification, by proposing a novel adaptive strategy based on
the Doddinghton Zoo, for the recognition of the user’s keystroke dynamics. The obtained
results demonstrate competitive performances on significant keystroke dynamics datasets.

V.2 Doddington zoo theory

Keystroke dynamics is a behavioral modality non intrusive, inexpensive and weakly
constrained for the user [Rybnicek et al., 2014, Mhenni et al., 2016].

The major drawback of this modality is that it suffers from large intra-class variation
[Epp et al., 2011, Nahin et al., 2014]. In fact, the keystroke dynamics of the user varies as
time elapses according to different situations. This variability may be due to the familiarity
with the password after a time span, the user’s humor and activeness and the changing of the
keyboard (AZERTY or QWERTY, virtual or physical).

Adaptive strategies [Didaci et al., 2014, Poh et al., 2012] also known as template update
strategies are an interesting solution to overcome the intra-class variability. Commonly, a
unique adaptation mechanism is applied to all users of the authentication process. Meanwhile,
it was demonstrated that biometric systems performances are subject dependent [Poh et al.,
2015a]. That is why, we decided to use an update strategy for each category of users in this
work. For that purpose, we are interested in the users classification based on the Doddington
Zoo [Doddington et al., 1998]. It is a widely used theory for user classification [Ross et al.,
2009, Morales et al., 2014], but, to our knowledge, it has not been mixed with adaptive
strategies for keystroke dynamics modality. The common users’ classes are :

• sheep: users who can easily be recognized;

• goats: users who are particularly difficult to recognize;

• lambs: users who are easy to imitate;

• wolves: users who can easily imitate others.
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Several methodologies have been proposed to distinguish between this variety of users as
shown in Figure V.1. Doddington et al. considered the classification based on the mean of
the user’s genuine or impostor scores. Indeed, users classified as goats increase the False Non
Match Rate (FNMR) of the recognition system whereas wolves and lambs increment its False
Match Rate (FMR). Other research works [Houmani & Garcia-Salicetti, 2016] proposed to
use the personal entropy and relative entropy for biometric menagerie of online signature
verification. Personal entropy is computed using only genuine data. It serves to differentiate
between sheeps and goats class of users. Relative entropy is calculated with both genuine
and impostor data. It helps to distinguish lambs class.
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Figure V.1 – Animal groups of the Doddington ZOO biometric menagerie according to [Houmani & Garcia-
Salicetti, 2016].

Besides, sheeps generally dominate the population of the zoo, goats as well as lambs
constitute only a small fraction of the population. However, the wolves category constitutes
a large portion of false rejection and acceptance rates.

Further, Yager and Dunstone [Yager & Dunstone, 2007] distinguished four other animal
categories of users by considering simultaneously both the genuine and impostor matching
scores, for each claimed identity:

• Chameleons: corresponds to users who are easy to recognize and easy to attack;

• Phantoms: depicts the users characterized by rejections of genuine and impostor
queries;

• Doves: represents the best users because they are easy to recognize and difficult to
attack;

• Worms: regroup the worst users as they are difficult to recognize and easy to attack.
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The four additional sub-categories can also be distinguished thanks to the FMR and
FNMR based classification or the entropy based classification as depicted in Figure V.2. For
the FMR and FNMR based classification, chameleons belong to the users that are known
by high genuine and impostor match scores. Contrariwise, phantoms are characterized by
low genuine and impostor match scores. Doves are a sub-group of Sheep according to this
classification methodology. They are the best users since they lead both to high genuine and
low impostor match scores. Worms in the opposite, are a sub-group of Goats. They represent
the worst users, as they lead to low genuine and high impostor scores. This categorization
was applied to diiferent modalities like face, speech, fingerprint, iris and keystroke modalities
[Yager & Dunstone, 2010], but it was not associated to an adaptive strategy specific to each
category of user.

The second method is to distinguish between these classes by the entropy based classifica-
tion. First, chameleons are a sub-category of goats and lambs as they are known by the lowest
Personal Entropy and the lowest Relative Entropy. Second, phantoms are a sub-category
of goats class regarding that they have a reference with poor data quality generated in the
enrollment phase. They are characterized by a low Personal Entropy and a low Relative
Entropy. Third, doves are a sub-category of sheep class. They are characterized by the lowest
Personal Entropy and the highest Relative Entropy. Finally, worms are a sub-category of
goats and lambs classes. They have the highest Personal Entropy and the lowest Relative
Entropy.
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Figure V.2 – Large animal groups of the Doddington ZOO biometric menagerie according to [Houmani &
Garcia-Salicetti, 2016].

In this chapter we are interested in the entropy based clssification to distinguish between
the users characteristics. For that purpose, we examined the entropy of the users of the
WEBGREYC database [Giot et al., 2012a] over time. We calculated the entropy of each
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user’s set of 5 samples in chronological order of the database safeguard. As depicted in
FigureV.3, the characteristics of some users are stable over time such as those of user 3 and
user 30. Others have an entropy that decreases over time like user 34. This means that their
intra class variation decreases thanks to the mastery of the password for example. However,
user 4 and user 11, have an increasing entropy. Their intra class variations increase due to
different parameters like their emotional state. Thus the need for a user specific adaptation
strategy is clearly demonstrated.
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Figure V.3 – Personal entropy of some users of WEBGREYC database.

The proposed contributions investigate an authentication method based on a single
capture of the user’s keystroke dynamics in the enrollment phase in coherence with the single
enrollment adaptation strategy proposed in the previous chapter IV. During the use of the
authentication system, the reference is enriched thanks to the user dependent adaptive strategy.
Users classification into Doddington Zoo categories is firstly based on the evolution of the
user’s reference size over time. Once the fixed maximum size of the reference is reached, the
users categorization is ensured with the personal and the relative entropy calculation. Then,
the adaptation strategy becomes specific to each category of users.

V.3 Three categories user specific adaptive system

This section presents a user dependent adaptive strategy according to the category of the
Doddington zoo to which the user belongs.
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V.3.1 Proposed adaptive strategy

The main idea consists in grouping users according to their performance evolution over
time. Then, we put forward an adaptive strategy specific to each category of users, to ensure
the usability of the keystroke dynamics modality. In the present work, three categories among
the animal based categories are considered: sheeps, goats and lambs. Wolves class has been
eliminated because we are not interested in modeling hackers in this work.

For the enrollment phase a single sample is considered to store the typing manner
characteristics of each user. Afterwards, during the utilization of the authentication systems,
the presented queries are classified based on the K Nearest Neighbor (KNN) classifier
with multiple distances [Mhenni et al., 2018b]. These distances were chosen based on a
comparison as explained in the previous chapter. Before taking the acceptance decision, a
GA vote is performed [Mhenni et al., 2019b], based on all obtained scores. If the query is
classified as genuine, it is used to update the user’s reference. This process is achieved in an
online way according to the algorithm 8.

Three adaptive mechanisms are considered for our process. The growing window mecha-
nism is firstly used when the maximum size of the reference is not yet reached. Once the size
of the user’s reference is equal to the fixed maximum size, the sliding window mechanism is
launched. Otherwise, the least frequently used mechanism is considered when the size of
the user’s reference is higher than the fixed maximum size. This is the case where the user
migrates from the class of goats to that of sheep. The least frequently used mechanism is
chosen to decrease the size of the reference from 15 to 10. Thus, the 5 least frequently used
samples of the reference are deleted.

Some parameters and choices of the strategy need to be redefined and updated during the
system’s operation. So, we divided the process into sessions. Each session consists in the
presentation of 8 new queries: 5 genuine queries and 3 impostor ones. The choice is similar
to that of previous experiments shown in section IV.4.

At the end of each session, a parameters’ adjustment is performed to optimize perfor-
mance and ensure smooth operation, through 3 steps detailed in the following:

• Users are assigned one of the three defined categories according to their characteristics:
During the growing window phase, the size of the reference is an important indicator
regarding the category of the user. Indeed, if the size of the reference of the user
remains small, this means that the number of accepted queries is limited. These users
belong to the category of goats which are known as being difficult to recognize. The
other part of the users, can be considered belonging to the sheep category since they
are easily recognized.
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Algorithm 8: Template update strategy for user j during an adaptation session.

Input :re f j(t) ,A = {q}, θ
adapt
j =

{
labelp, maxSize

(
re f j(t)

)}
Output :re f j(t+1)

1 nq←0 Number of accepted queries during the session
2 N← size

(
re f j(t)

)
3 score1 ← similarityScore

(
KNNHamming

(
re f j(t)

)
;q

)
4 score2 ← similarityScore

(
KNNEuclidean

(
re f j(t)

)
;q

)
5 score3 ← similarityScore

(
KNNS tatistical

(
re f j(t)

)
;q

)
6 score4 ← similarityScore

(
KNNManhattan

(
re f j(t)

)
;q

)
7 score j = α × score3 + β × score1 + γ × score2 + δ × score4

8 if
(
score j <adaptatedThreshold

)
then

9 nq←nq+1
10 if

(
N<maxSize

(
re f j(t)

))
then

11 re f j(t+1) ← GrowingWindow
(
re f j(t) ,q

)
12 else
13 if

(
N==maxSize

(
re f j(t)

))
then

14 re f j(t+1) ← SlidingWindow
(
re f j(t) ,q

)
15 else
16 re f j(t+1) ← LeastFrequentlyUsed

(
re f j(t) ,q

)
17 end
18 end
19 end

However, during the other adaptation phases (sliding window and least frequently
used mechanisms), the distinction of the users’ categories is based on the Entropy
measure, since the size of the reference is maximum and is no longer significant. First,
the Personal Entropy is measured by means of local density estimation according to
equation (V.1).

PersonalEntropy j = −

N∑
i=1

re f j(t)(i) log (re f j(t)(i)) (V.1)

Where N is the number of samples in the reference.

If the Personal Entropy is low, then the user is classified as a sheep. Otherwise the
user is considered as a goat. Additionally, the objective of this work requires assessing
the vulnerability of a user to attacks. For this reason, we consider another quality
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measure, namely Relative Entropy, which allows a user to be characterized not only in
terms of keystroke dynamics variability, as Personal Entropy does, but also in terms of
how difficult it is to attack such a typing manner. In fact, Relative Entropy defined in
Equation (V.2), aims to recognize users belonging to lambs class.

EntropieRelative j =
1
2

( N∑
i=1

re f j(t)(i) log
( re f j(t)(i)
attaq j(i)

)
+

N∑
i=1

attaq j(i) log
(attaq j(i)

re f j(t)(i)

))
(V.2)

where attaq j is a matrix containing N samples of the keystroke dynamics of multiple
users other than the user j.

If the value of this entropy is low, the user is considered more vulnerable to attacks.
Thereby, he/she is classified as a lamb. The details of this process are described by the
algorithm 9.

Algorithm 9: Assign users to specific classes at the end of the session.
Input :re f j(t) , attaq j

Output :goatsClass, sheepClass, lambsClass

1 if
(
N<maxSize

(
re f j(t)

))
then

2 if nq<3 then
3 goatsClass← goatsClass ∪ {user j}

4 else
5 sheepClass← sheepClass ∪ {user j}

6 end
7 else
8 PE j ← PersonalEntropy

(
re f j(t)

)
9 if PE j<0.4 then

10 sheepClass← sheepClass ∪ {user j}

11 else
12 goatsClass← goatsClass ∪ {user j}

13 end
14 RE j ← RelativeEntropy

(
re f j(t)

)
,attaq j

15 if RE j<6 then
16 lambsClass← lambsClass ∪ {user j}

17 end
18 end

• The vote parameters are controlled: The parameters (α, β, γ, δ) are generated by the
Genetic Algorithm (GA) based on its parameters detailed in Table V.1. At the end
of the first update session, after the creation of the three categories of users, these
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parameters are generated to each category of users separately. At the end of each
session, the vote parameters are updated thanks to the GA to fit the variation of each
category population.

Table V.1 – Parameters of the Genetic Algorithm

Parameter Value
Population size 50 (number of variables6 5)
Crossover Fraction 0.8
Generation 400 (100*number of variables)
Elite count 2.5 (0.05 * population size)
Fitness Function Minimizing the False Rejection Rate

(FRR) and the False Acceptance Rate
(FAR)

Selection Function Stochastic uniform
Crossover Function Crossover Scattered
Mutation Function Gaussian

• The used thresholds are updated: The thresholds of acceptance and adaptation decision
are adapted according to Equation (V.3). These thresholds are individual and adapted
from one update session to another as defined in our work [Mhenni et al., 2016] and
detailed in the previous chapter in section IV.3.4.1.

T i+1
j = T i

j − e−
µ j
σ j (V.3)

For all user categories, we changed some parameters according to the specificities of the
user’s category as summarized in Table V.2.

Table V.2 – Specific parameters according to user’s category

User category Reference size Thresholds
Sheep 10 Adapted thresholds
Goats 15 Adapted thresholds
Lambs 10 Stricter thresholds

These choices are not arbitrary, the variation of the size of the reference and the chosen
thresholds are justified as follows:
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• For the sheeps class, standard settings are specified. The maximum size of the reference
is fixed to 10, and the thresholds are adapted according to Equation (V.3).

• For the goats class, which is characterized by high intra-class variability, the description
of their typing manner needs to be richer than that of other categories. For that, we
have increased the maximum size of the reference of this user class to 15.

• Concerning the lambs, which are the most susceptible to be attacked as they are
easy to imitate, stricter thresholds for the selection of new queries is the appropriate
strategy. Thus, the thresholds of acceptance and update decision are updated according
to Equation (V.4).

T i+1
j = T i

j − e−
µ j

2∗σ j (V.4)

The biometric menagerie served to adjust all the parameters of the adaptive strategy
(adaptive mechanism, reference size, decision thresholds, vote parameters, etc) to the users
specificities, thus demonstrating competitive and promising performances as shown in the
next section.

V.3.2 Experiments and results

The proposed approach is validated on two public datasets. In the WEBGREYC
database [Giot et al., 2012a], 45 users participated in five acquisition sessions, typed the
same password "SÉSAME" and provided 60 patterns. The CMU database [Killourhy &
Maxion, 2010] includes the data of 30 users that typed the same password 400 times during
eight acquisition sessions. The imposed password is ".tie5Roanl". Thus, for our experiments,
we obtain 12 adaptation sessions for the WEBGREYC database (60/5) and 80 adaptation
sessions for the CMU database (400/5).

To evaluate the performances of the proposed method, we used the Error Equal Rate
(EER) and the Area Under Curve (AUC) metrics. The DET curves for the two considered
databases are depicted in Figure V.4. The achieved performances are promising as the EER
of the last adaptation session of the WEBGREYC and CMU database is respectively equal
to 0.8% and 0.3%. Furthermore, we illustrate the variation of the size of users’ references
during the use of the system in Figure V.5. It is an indicator of the users’ categories during
the growing window mechanism as it represents how ease of recognizing the user.
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Figure V.4 – Illustration of DET curves and the associated EER and AUC performances of each adaptation
session.

The distribution of users categories among all adaptation sessions is also illustrated in
Figure V.6. The sheep class represents the majority of users for both considered databases.
Goats class represent approximately 0.2% for WEBGREYC and CMU databases. Lambs
class represents 0.15% for WEBGREYC database and 0.16% for CMU database. Some
users, especially for CMU database, switched from goats class to sheeps class thanks to the
improvement in their performances.
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Figure V.5 – Size variations of users’ galleries during all adaptation session.

To highlight the advantages of the proposed method, we elaborate a comparison, depicted
in Table V.3, of the proposed adaptation strategy with and without the biometric menagerie
of Doddington Zoo. The achieved results demonstrate that classifying and updating users
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Figure V.6 – Distribution of users categories during all adaptation sessions. The green color illustrates the
sheep class, the red color illustrates the goats class and the blue color illustrates the lambs class.

reference according to their performances during the use of the system improved the EER
performances by more than 2% going up to 4.5%. The AUC performances has improved by
more than 0.003 going up to 0.017.
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Table V.3 – Comparison of the proposed adaptation strategy

Without biometric menagerie With biometric menagerie
Database

EER AUC EER AUC
WEBGREYC 5.3% 0.02 0.8% 0.003
CMU 2.3% 0.004 0.3% 0.001

V.4 Seven categories user specific adaptive system

These experiments investigate an adaptive strategy that takes into account the specificities
of each user to remedy to its intra-class-variations. More Doddington zoo categories are
considered in these experiments.

V.4.1 Proposed adaptive strategy

Figure V.7 depicts the proposed authentication process based on the keystroke dynamics
modality. Two samples are considered initially to register the typing manner of the user.
Indeed, for recent password-based applications, users are usually asked to type their password
and to confirm it when creating an account. Thus, since we can benefit from an additional
capture for the creation of the reference, we considered two samples initially.

As the previous experiments, the classification is realized thanks to the GA-KNN classifier.
During the two first update sessions, we start to classify users into two groups: sheep and
goats. We are first interested to only these two groups because we focus on the most
representative groups of the Doddington zoo.

Thereby, over the growing window phase, we assume that users, whose number of
accepted queries has not overcome 3 samples during the update session, are not easily
recognized. So, they are classified as goats. The rest of the users, those whose number of
accepted queries is greater than 3, are classified as sheep, as they are easy to recognize.

For the sliding window mechanism, the size of the reference is no more significant as
the maximum size of the reference is reached. So, we considered the Entropy measure to
distinguish between the considered users groups. In fact, it was demonstrated in [Houmani &
Garcia-Salicetti, 2016, Morales et al., 2014] that the higher the user’s entropy is, the more the
error rates increase. Thereby, both Personal and Relative Entropy are calculated according to
equations (V.1) and (V.2) respectively.

Therefore, starting from session 4, we use the Entropy to classify users. We initially
distinguish the lambs class. Once users of this class are defined, we determine during the
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Figure V.7 – Description of the proposed keystroke authentication process.

following sessions the remaining classes of the zoo. Once session 6 starts, classes of worms,
doves, chameleons and phantoms take place and classes of sheep, goats, and lambs disappear.

For each class, we use specific adaptation parameters [Mhenni et al., 2019a, Mhenni et al.,
2018]. Concerning goats and worms classes, which are characterized by a high intra-class
variations according to the different conducted experiments, we increased the maximum
size of the reference to 15 in order to enrich the description of the keystroke dynamics
of the users. The maximum size of phantoms class should be higher because this class is



V.4 Seven categories user specific adaptive system 123

difficult to describe. Regarding the lambs, worms, chameleons and phantoms classes, stricter
thresholds are needed to minimize the acceptance of the impostor attacks. These thresholds
are generated based on equation (V.4). The fixed parameters for each user category are
detailed in Table V.4.

Table V.4 – Specific parameters according to user’s category

User category Reference size Thresholds
Sheep 10 Adapted thresholds
Goats 15 Adapted thresholds
Lambs 10 Stricter thresholds
Worms 15 Stricter thresholds
Chameleons 10 Stricter thresholds
Doves 10 Adapted thresholds
Phantoms 20 Stricter thresholds

So, regarding users who suffer from a large intra-class variation, we enlarge the reference
size to capture more variabilities. Moreover, for users that are more vulnerable to impostor
attacks, we apply stricter thresholds to eliminate as much as possible the false accepted
queries in our system.

V.4.2 Experiments and results

The proposed approach was tested on two public databases: WEBGREYC and CMU.
We managed user samples during the adaptation sessions as follows. Two samples of each
user are considered during the enrollment phase in order to create the reference. For each
adaptation session, 8 new queries are introduced to the authentication system. These queries
are divided into 5 genuine samples and 3 impostor ones. Thus, we considered 12 adaptation
sessions for the WEBGREYC database and 80 adaptation sessions for the CMU database.

To evaluate the proposed approach we analyzed different data stream for each adaptation
session:

• Scenario 1: Presenting 5 genuine samples first, afterwards 3 imposter samples are
presented to the authentication system.

• Scenario 2: Presenting alternated genuine and imposter samples.

• Scenario 3: Presenting 3 imposter samples first, afterwards 5 genuine samples are
presented to the authentication system.
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Generally, the first two data streams conveniently fit the actual scenarios of the password
based applications [Mhenni et al., 2019a]. In fact, just after creating an account, the user is
usually asked to enter his credentials again to gain access to his account. Consequently, at
least one genuine query is guaranteed in the beginning of the process.

To evaluate the performance of the proposed approach, we consider two evaluation met-
rics: the EER and the AUC. The obtained results show an improvement in the performance
of the strategy as demonstrated in Figures V.8(a) and V.9(a). Adding doves, phantoms,
chameleons and worms classes, improved the EER performances by 0.6% for the WEBGR-
EYC database and by 0.2% for the CMU database. Furthermore, when compared to the same
adaptation approach without biometric menagerie, the user specific adaptation approach
ensures an improved EER performance of more then 2% for CMU database and 5% for
WEBGREYC database.
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Figure V.8 – Obtained performances and the distribution of users classes when considering scenario 1 for
WEBGREYC database.
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Figure V.9 – Achieved performances and the distribution of users classes when considering scenario 1 for
CMU database.
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We also depict the distribution of users categories among all adaptation sessions for the
two considered databases. The sheep class includes the majority of users as shown in Figures
V.8 and V.9.

To illustrate the benefits of the consideration of 7 classes of the Doddington zoo in
the proposed approach, we compared it to the same adaptation approach without biomet-
ric menagerie and with the consideration of only 3 classes conducted in [Mhenni et al.,
2018a] namely sheep, goats and lambs. As demonstrated in Tables V.5 and V.6, the pro-
posed approach show improved performances as it proposes an adaptive strategy that is
the most appropriate to the user’s specificities. In fact, the considered users’ categories
encompass a wider variety of users. Hence, the adaptation method acts according to each
user’s particularities.

Table V.5 – Comparison of the proposed adaptation strategy for WEBGREYC database

Adaptation strategy EER AUC
Without Doddington menagerie [Mhenni et al., 2019b] 5.3% 0.02
Biometric menagerie based on 3 classes [Mhenni et al., 2018a] 0.8 % 0.003
Biometric menagerie based on 7 classes 0.2% 0.002

Table V.6 – Comparison of the proposed adaptation strategy for CMU database

Adaptation strategy EER AUC
Without Doddington menagerie [Mhenni et al., 2019b] 2.3% 0.004
Biometric menagerie based on 3 classes [Mhenni et al., 2018a] 0.3% 0.001
Biometric menagerie based on 7 classes 0.1% 0.0001

To reveal the impact of imposter attacks on the proposed approach, we tested different
scenarios of the queries presentations. When considering the 3 imposter samples before the
genuine ones (scenario 3), the performances are considerably decreased as demonstrated in
Figure V.11(a). This is quite expected as the initial reference doesn’t contain enough intra-
class variation. Thus the recognition errors are higher in the beginning of the process. These
errors decrease during the adaptation sessions through the proposed method. In addition, we
illustrated the the users categorization in Figure V.11. It is quite clear that the number of
users belonging to goats class has increased considerably since the beginning. In fact, the
percentage of goats class in adaptation session 2 raised from 20% (for scenario 1) to 53%
(for scenario 2). This may be due to the inclusion of some imposter samples in the reference.
Subsequently, these imposter samples will be removed as time elapses due to the proposed
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adaptation system. In fact, for scenario 3, the percentage of users associated to goats class in
adaptation session 2 decreased to 31%. Thanks to the considered user specific parameters,
the number of genuine samples included in the reference increase and the imposter samples
decrease especially through the sliding window mechanism. Thus, the intra-class variation
of the reference samples is reduced.
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Figure V.10 – Obtained performances and the distribution of users classes when considering scenario 2 for
WEBGREYC database.
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Figure V.11 – Obtained performances and the distribution of users classes when considering scenario 3 for
WEBGREYC database.

When mixing the genuine and imposter queries (scenario 2), the obtained results are
better than those obtained in scenario 3 as depicted in Figure V.10(a) and they are quite
similar to those of scenario 1. The scenarios presenting better performances (1 and 2) are
more realistic. In fact, adding a new account is usually transparent for any password based
application. Hence, it is not evident that a hacker encounters an account since its creation.
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We have furthermore performed an analysis on the variation of the reference size concern-
ing each user category of the menagerie considered in the proposed approach. As depicted
in Tables V.7 and V.8, the chosen parameters are optimal. Indeed, minimizing the size
of the reference, guaranteed the gain in used memory space, but no improvement in the
performance is recorded. Moreover, while enlarging the size of the reference, a small increase
in performance is registered. Thus, the extra memory space allocated does not produce a
significant influence on the obtained performance. Hence, we prove that the chosen reference
sizes are the most appropriate to each user category.

Table V.7 – Obtained performances by varying the size of the reference for each user category for WEBGREYC
database

User category Performances
Reference size

Sheep Goats Lambs Worms Chameleons Doves Phantoms EER AUC
max1 5 10 5 10 5 5 15 6.5% 0.05
max2 10 15 10 15 10 10 20 2.22% 0.002
max3 15 20 15 20 15 15 25 2% 0.0017

Table V.8 – Obtained performances by varying the size of the reference for each user category for CMU
database

User category Performances
Reference size

Sheep Goats Lambs Worms Chameleons Doves Phantoms EER AUC
max1 5 10 5 10 5 5 15 5.9% 0.047
max2 10 15 10 15 10 10 20 1.37% 0.0001
max3 15 20 15 20 15 15 25 1.14% 0.0008

V.5 Conclusion

In this chapter, we put forward a novel authentication method that helps to reinforce
the security of IT services. Based on keystroke dynamics modality, the proposed method
helps password based application to overcome hacking attacks. Indeed, the adaptive strategy
specific to the user’s category presents many advantages. First, the recognition of the user
category according to the animal based categories of the Doddington Zoo, helps to distinguish
the user’s specificities. Then an adaptive strategy that remedy the problems of the user class
is adopted. So, three different adaptive mechanism are simultaneously used : the growing
window mechanism, the sliding window mechanism and the least frequently used mechanism.
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Another important benefit of the proposed method is the minimization of the size of the
reference. As it is user dependent, a gain in used memory is ensured. Only users with a large
intra-class variation , have a larger reference size. Moreover, users who are more vulnerable
to hacker attacks, are given stricter decision thresholds. Even if this choice minimizes the
capture of intra-class variation of these users, since only the most similar data are considered,
it protects them against attacks which are their weak point.
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VI.1 General conclusion

Password-based applications have an important role in securing sensitive data and are
ubiquitous in our daily lives. However, they are still vulnerable to hacker attacks. Thus,
improving the security of these applications by adding keystroke dynamics verification
remains a major challenge, as long as an accurate description of the user’s typing manner is
crucial to address the problem of intra-class variation.

Biometric systems are able to authenticate the identity of an individual based on what he
is/does. They have been successfully used in several applications. Characteristics used for
recognition should meet some properties [Jain et al., 2004a], as discussed in the beginning
of this paper: universality, distinctiveness, permanence and collectability. However, recent
studies have shown that the permanence is not met for several biometric modalities [Roli
et al., 2007, Poh et al., 2012, Rattani, 2015] especially for keystroke dynamics modality
[Giot et al., 2012c, Pisani et al., 2017]. This is due to several reasons, including ageing
and changing conditions, as discussed in Section II.3.6. In order to deal with this problem,
adaptive biometric systems have been proposed. This is relatively new field of study in
biometrics.

This thesis work is part of the field of biometric reference adaptation. We proposed a
contribution to the reference modeling by using a single sample for the enrollment phase,
which is then enriched by the update strategy to enlarge the gallery size. This solution meets
the requirements of today’s applications especially those integrated in the web or mobile.
We also proposed a new update decision criterion. This criterion guarantees individual
and adaptive thresholds that are adequate to the user’s typing rhythm. Also, the proposed
adaptation mechanism "double serial" allows the enrichment and adaptation of the reference
over time while guaranteeing a reduced size. This will indirectly influence user recognition
performance. Finally, we proposed an update strategy specific to each user category according
to Doddington zoo theory. We have considered increasingly a larger number of categories of
the zoo to characterize the user precisely.

This work was conducted as follows:
In the first chapter, we presented the economic and cybernetic contexts as well as

the motivations of our study on password based security. An overview on the different
industrialized solutions to reinforce the applications security was presented.

In the second chapter, we have spread a review of the operating principle of biometric
systems, especially for the keystroke dynamics modality. In addition, we presented the
limitations of this modality and the challenges of its industrialization including the intra-class
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variation of user characteristics as time elapses and the tedious enrollment phase. These
limitations and variations that motivate the use of adaptation strategies.

The third chapter presented the state of the art on the different adaptation methods existing
in the literature. We have also detailed adaptive strategies according to a new taxonomy to
easily compare them. Regarding the proposed taxonomy, the update strategy were divided
into five components: reference modeling, decision criterion, adaptation mode, periodicity
of adaptation, and adaptation mechanism. We were able to make contributions on some
parameters with remarkable enhancements to remedy to target disadvantages.

The fourth chapter investigates a novel method, which considers the conditions necessary
for the application in real life of the keystroke dynamics modality especially for web services
and mobile applications. In fact, in spite of its great advantage to reinforce the security of the
password-based applications facing hacking attacks, this modality has not been industrialized
yet. The main interest of the proposed method is that it minimizes as much as possible
the number of samples used in the learning phase. Indeed, a unique sample is required
initially. Besides, we adopt the double serial adaptation mechanism to remedy to the intra-
class variations of the users’ characteristics: It consists in combining the growing window
and the sliding window mechanisms. The growing window serves to enlarge the users’
galleries so as to capture more intra-class variability. After reaching the maximum size of
the reference, which is fixed to 10, the sliding window mechanism takes place. It permits
describing and following the temporal variation of the users’ keystroke dynamics. Also, the
adaptive threshold criterion has a great impact on the improvement of the obtained results.
It is adapted to the gallery variation of each user. Eventually, the classification is achieved
thanks the the GA-KNN classifier which was efficient especially since we eliminated the
enrollment phase. Thanks to all these choices, we have obtained a competitive performance
with a minimal size of the reference template (one sample for the enrollment and ten for the
maximum size of the reference gallery). The accomplished results have been interesting.

In the fifth chapter, we put forward a user specific adaptation strategy based on the
Doddington Zoo concept. It consists in applying an adaptive strategy related to each user class.
So, regarding users who suffer from a large intra-class variation, we enlarge the reference size
to capture more variabilities. Moreover, for users that are more vulnerable to impostor attacks,
we apply stricter thresholds to eliminate as much as possible the false accepted queries in our
system. Indeed, Doddington zoo is a biometric menagerie that applies an analogy between
users and animals characteristics, and it was efficient for discrimination between users. A
large number of the zoo classes is considered in this work, thus demonstrating enhanced
performances. Besides, the proposed approach has the advantage of being conform to the
web and mobile applications that generally consider only two password acquisitions (the
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second is to confirm the firts typed one) when creating a new account. So, we consider only
these two samples to create the user’s reference.

VI.2 Future work

As perspectives, we are involved in a novel approach that may improve the performances
of the first sessions so as to make the keystroke dynamics modality more compatible with
industrialization conditions.

Furthermore, we aim to apply and model impostor attacks to reinforce the security of
our authentication system. Thus, the possibility of extending the Doddington zoo classes
by incorporating the wolves class to the considered ones and examine their relevance to the
proposed system.

Besides, it will be worth applying and comparing the proposed method to other devices
like mobile phones and to other modalities like voice and touch screen interactions. One
possible orientation for typing dynamics is its use in touch screen devices due to their
increasing availability. These devices can provide additional features to increase accuracy.
As a result, more public databases on keystroke dynamics are needed. In addition, the use
of more databases would increase confidence in performance comparisons of classifiers
established in the literature.

An other opportunity consists in the acquisition of a novel dataset suitable to evaluate
adaptive biometric systems. It can be oriented for mobile devices or for the keystroke dynamic
of Arabic passwords (which is in progress). This dataset should meet some requirements to
be used to evaluate adaptive biometric systems (see Section II.3.3). These datasets need to
contain several samples per user and, ideally, they should be acquired at different acquisition
sessions. Currently, there are some public datasets, however, additional ones with a greater
number of users and sessions are still needed. One example is for the evaluation of large
scale adaptive systems, as discussed in the previous item. Since it requires a lot of effort to
be able to acquire biometric data for the same users during long periods, it is considered a
current challenge in the field. The design of cohort databases is another related topic. These
databases could be useful to implement score normalization [Poh et al., 2009a] for adaptive
biometric systems.

In addition, we can use the user’s profile for the update of the biometric reference. It
can be used as an adaptation criterion to help when to apply the adaptation mechanism. Or
even, it can be an important information to define the user’s specificity and to set appropriate
adaptation parameters. we can also define an attack strategy specific to the adaptation
strategies. It may be a standard evaluation of update systems.
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Moreover, deep learning opens promising new horizons. Exploiting this classifier for the
keystroke dynamics modality is an interesting opportunity, taking into account the results
already obtained and the choices already made.
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